首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequential multi-energy implantations of zinc and sulphur ions have been performed in a 250-nm thick SiO2 layer thermally grown on 1 1 1 silicon. Energies and doses have been chosen to produce 10 at.% constant concentration profiles overlapping over about 100 nm. Manganese is subsequently introduced at various levels by the same way. Thermal treatments (from 700 to 1100 °C) lead to the formation of nanometric precipitates of the luminescent compound ZnS:Mn. A bimodal size distribution is observed, with a quasi-single layer of large particles (40 nm) in the end-of-range region and much smaller precipitates between this layer and the surface. The orange emission is maximal when the Mn concentration is close to 3%. Several hours at 900 °C is the best thermal budget for maximal luminescence intensity at room temperature. A shift of the excitation spectrum related to size variations, shows that the particles of smaller size are mainly responsible for the observed luminescence. In agreement with other authors, the luminescence lifetime is found in the ms range and increases with the nanocrystal diameter, tending to the lifetime of bulk ZnS. The luminescence of ZnS:Mn nanoparticles embedded in SiO2 by ion implantation is also shown to be very stable during long UV light irradiation.  相似文献   

2.
ZnS and Mn-doped ZnS nanoparticles were synthesized via a simple hydrothermal synthesis method. The former emits super bright blue fluorescence light while the latter exhibits super-bright yellow light under a fluorescence microscope. Accordingly, their photoluminescence peaks are located at 420 nm and 580 nm in the spectra excited with 281 nm and 335 nm wavelengths, respectively. The super-bright ZnS:Mn nanoparticles can be used as a yellow fluorescence powder in making LED and plat display, and can be used as biological fluorescence probe to replace CdSe, CdS quantum dos without any damage to mankind and environment.  相似文献   

3.
Nanocrystalline ZnS thin films have been synthesized by radio frequency magnetron sputtering technique on glass and Si substrates at a substrate temperature 300 K. X-ray diffraction and selected area electron diffraction studies confirmed the formation of nanocrystalline cubic phase of ZnS in the films, although the target material was hexagonal ZnS. The particle size, calculated from the XRD patterns of the thin films was found in the range 2.06-4.86 nm. TEM micrographs of the thin films revealed the manifestation of ZnS nanoparticles with sizes in the range 3.00-5.83 nm. UV-vis-NIR spectrophotometric measurements showed that the films were highly transparent (∼90%) in the wavelength range 400-2600 nm with a blue shift of the absorption edge. The direct allowed bandgaps have been calculated and they lie in the range 3.89-4.44 eV. The particle size, calculated from the shift of direct bandgap, due to quantum confinement effect lying in the range 3.23-5.60 nm, well support the TEM results. The room temperature photoluminescence spectra of the films showed two peaks centered around 315 and 450 nm. We assigned the first peak due to bandgap transitions while the latter was due to sulfur vacancy in the films. The composition analysis by energy dispersive X-rays also supported the existence of sulfur deficiency in the films. The dielectric property study showed high dielectric constant (85-100) at a higher frequency (>5 kHz).  相似文献   

4.
5.
Three different ZnO nanostructures: nanocherries, nanomultipeds and nanospindles were successfully synthesized by thermal evaporation method under different experimental conditions. The X-ray diffraction peaks indicate that these ZnO nanostructures prefer to grow along the c-axis. Photoluminescence (PL) spectra show that they are partially related to morphologies. Comparing the field emission (FE) measurements of the three ZnO nanostructures, we found that the nanocherries structure has the lowest turn-on and threshold field, 2.31 V/μm and 5.83 V/μm, respectively, for nanospindles and nanomultipeds structures, they are 2.82 V/μm and 6.57 V/μm, 3.13 V/μm and 7.35 V/μm, revealing that the nanocherries structure may be one of the promising candidates for field emission displays.  相似文献   

6.
X.X. Yang  B.P. Wang  C. Li  K. Hou  Y.K. Cui  Y.S. Di 《Thin solid films》2009,517(15):4385-205
Flower-like zinc oxide (ZnO) nanostructures with hexagonal crown were synthesized on a Si substrate by direct thermal evaporation of zinc power at a low temperature of 600 °C and atmospheric pressure. Field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy and photoluminescence were applied to study the structural characteristics and optical properties of the product. The result indicated that the flower-like product with many slender branches and hexagonal crowns at the ends were single-crystalline wurtzite structures and were preferentially oriented in the <001> direction. The photoluminescence spectrum demonstrated a strong UV emission band at about 386 nm and a green emission band at 516 nm. The field emission of the product showed a turn-on field of 3.0 V/µm at a current density of 0.1 μA/cm2, while the emission current density reached about 1 mA/cm2 at an applied field of 5.9 V/μm.  相似文献   

7.
In this paper, an ultra thin sheet-like carbon nanostructure, carbon nanoflake (CNF), has been effectively fabricated by RF sputtering on Si substrate without any catalyst or special substrate pre-treatment. The CNFs were chosen to be the field emission emitters because of their very sharp and thin edges which are potentially good electron field emission sites. The effect of deposition parameters such as substrate temperature, gas flow ratio and RF power on the field emission properties is discussed in detail. The sheet-like structures with thickness of about 10 nm or less stand on edge on the substrate and have a defective graphite structure. The field emission properties of the sample deposited at the optimum deposition conditions are turn-on field of 5.5 V/μm and current density of 1.4 mA/cm2 at 11 V/μm. Considering the inexpensive manufacturing cost, lower synthesis temperature and ease of large-area preparation, the CNFs with low turn-on field deposited by RF sputtering might have a potential application in field emission devices.  相似文献   

8.
ZnO:P nanobelts were self-assembly synthesized by thermal evaporation of Zn power and P2O5 mixture. The temperature dependence photoluminescence of ZnO:P nanostructures was studied from 81 to 291 K. As the temperature increased from 81 to 111 K, the PL intensity of DAP emission was obviously enhanced. The abnormal PL intensities were ascribed to the acceptor vibration with local phonon and lattice phonon assistant. The PL of zinc vacancy and its replica were well resolved due to the strenuous vibration of Zn vacancy. The replica of zinc vacancy emission increased while the visible emission gradually decreased with the temperature increase. It suggested that there were intensive deep acceptor vibration. The field emission properties of the ZnO:P nanostructures have been investigated according to the acceptor-related PL spectra. The influence of space charge effect on the field emission behaviors was also discussed.  相似文献   

9.
Nanocrystalline ZnS films with different thickness (10–40 nm) were deposited onto quartz and NaCl substrates by magnetron sputtering of a ZnS target in argon plasma. All the films showed a zinc blende structure and the photoluminescence peak positions depended on the surface to volume ratio of the films. The optical absorption in these films could be explained by the combined effects of phonon and inhomogeneity broadening along with optical loss due to light scattering at the nanocrystallites.  相似文献   

10.
ZnS and transition metal (Mn and Ni) doped ZnS were synthesized by a simple chemical method using alkyl hydroxyl ethyl dimethyl ammonium chloride (HY) as capping agent. The structural and optical properties were studied using various techniques. FTIR and X-ray diffraction (XRD) can be used to identify the chemical bonding and crystal structure. The XRD analysis show that the particles are in cubic structure. The mean size of the nanoparticles calculated through Scherrer equation is in the range of 5–2.5 nm. Elemental dispersive analysis of doped samples reveals the presence of doping ions. The transmission electron microscopic studies show that the synthesized particles are in spherical shape. Optical characterization of both undoped and doped samples was carried out by ultraviolet–visible and photoluminescence spectroscopy. The absorption spectra of all the samples are blue shifted from the bulk ZnS.  相似文献   

11.
Trivalent dysprosium (Dy3+) activated magnesium alluminate phosphors were synthesized by high temperature solid state reaction method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting phosphors. The results show that the obtained MgAl2O4:Dy3+ phosphors have good crystallinity, spherical morphology with sizes ranged from 120 to 140 nm and strong blue emission under an excitation of 258 nm. The emission spectrum of this phosphor consists of two emission bands: blue band and yellow band, and the emission intensity of the former is stronger than that of the later. Luminescence quenching is explained and the corresponding luminescence mechanisms have been proposed.  相似文献   

12.
We here report highly pure and single crystalline grass-like gallium nitride (GaN) nanostructures obtained on silicon substrate via catalyst-assisted CVD route under NH3 atmosphere inside horizontal tube furnace (HTF) by pre-treating the precursors with aqueous NH3. The as-obtained GaN nanostructures were characterized by XRD, SEM, EDS, HRTEM and SAED. The field emission (FE) characteristics of grass-like GaN nanostructures exhibited a turn-on field of 7.82 V μm− 1 and a threshold field of 8.96 V μm− 1 which are quite reasonable for applications in electron emission devices, field emission displays and vacuum microelectronic devices. Room temperature photoluminescence (PL) measurements of grass-like GaN nanostructures exhibited a strong near-band-edge emission at 368.8 nm (3.36 eV) without any defects related emissions which shows its potential applications in optoelectronics.  相似文献   

13.
This study investigates the effect of different growth parameters on the structural and optical properties of ZnS thin films, prepared using spray pyrolysis. The films were prepared using different Zn:S ratios (between 1:1 and 1:6) and in different growth solutions: (A), zinc chloride and thiourea and (B) dehydrated zinc acetate and thiourea, both in distilled water.By varying the Zn:S ratio in the films, the optical properties (absorption and photoluminescence) show that different species are created during film growth. This was deduced from the wide emission band appearing in the green region of the photoluminescence spectra, and from the change in band gap, which varies between 3.2 and 3.5 eV. Films formed from solution (A) with a Zn:S ratio of 1:3 or 1:4 show the best morphology and transmission. ZnS has a wider band gap than other conventional II-VI semiconductors utilized in various electronic and optical devices and can be expected to provide a useful window layer of solar cells which leads to an improvement in overall efficiency by decreasing absorption loss.  相似文献   

14.
Systematic investigation of the structural, morphological and optical properties of hexylamine capped zinc oxide (ZnO) nanoparticles is presented. Optical properties indicate the presence of sufficient amount of surface defects. These defects in highly dispersed ZnO nanoparticles have been studied by annealing the nanoparticles in air at various temperatures and recording the photoluminescence spectra. The annealing temperature was found to strongly influence the UV band edge emission and the blue-green defect level emission (DLE). At low annealing temperatures an increase in UV emission with temperatures is observed and this emission is proposed to be a result of desorption of surface adsorbed water and hydroxyl groups. The DLE of the synthesized sample is likely due to the presence of oxygen vacancies on the surface resulting in green emission.  相似文献   

15.
Undoped and Mn-doped ZnS nanoclusters have been synthesized by a hydrothermal approach. Various samples of the ZnS:Mn with 0.5, 1, 3, 10 and 20 at.% Mn dopant have been prepared and characterized using X-ray diffraction, energy-dispersive analysis of X-ray, high resolution electron microscopy, UV-vis diffusion reflection, photoluminescence (PL) and photoluminescence excitation (PLE) measurements. All the prepared ZnS nanoclusters possess cubic sphalerite crystal structure with lattice constant = 5.408 ± 0.011 ?. The PL spectra of Mn-doped ZnS nanoclusters at room temperature exhibit both the 495 nm blue defect-related emission and the 587 nm orange Mn2+ emission. Furthermore, the blue emission is dominant at low temperatures; meanwhile the orange emission is dominant at room temperature. The Mn2+ ion-related PL can be excited both at energies near the band-edge of ZnS host (the UV region) and at energies corresponding to the Mn2+ ion own excited states (the visible region). An energy schema for the Mn-doped ZnS nanoclusters is proposed to interpret the photoluminescence behaviour.  相似文献   

16.
Zinc sulphide thin films have been deposited on glass substrates using the chemical bath deposition technique. The depositions were carried out in the pH range of 10 to 11.5. Structure of these films was characterized by X-ray diffraction and scanning electron microscopy. Optical properties were studied by spectrophotometric measurements. Influence of the increased pH value on structural and optical properties is described and discussed in terms of transmission improvement in the visible range. Transmission spectra indicate a high transmission coefficient (70%). The direct band gap energy is found to be about 3.67 eV for the films prepared at pH equal to 11.5.  相似文献   

17.
Lithium (Li) and nitrogen (N) dual-doped ZnO films with wurtzite structure were prepared by radio-frequency magnetron sputtering ZnO target with Li3N in growth ambient of pure Ar and the mixture of Ar and O2, respectively, and then post annealing techniques. The film showed week p-type conductivity as the ambient was pure Ar, but stable p-type conductivity with a hole concentration of 3.46 × 1017 cm− 3, Hall mobility of 5.27 cm2/Vs and resistivity of 3.43 Ω cm when the ambient is the mixture of Ar and O2 with the molar ratio of 60:1. The stable p-type conductivity is due to substitution of Li for Zn (LiZn) and formation of complex of interstitial Li (Lii) and substitutional N at O site, the former forms a LiZn acceptor, and the latter depresses compensation of Lii donor for LiZn acceptor. The level of the LiZn acceptor is estimated to be 131.6 meV by using temperature-dependent photoluminescence spectrum measurement and Haynes rule. Mechanism about the effect of the ambient on the conductivity is discussed in the present work.  相似文献   

18.
Arrays of ZnO nanowires (NWs) were fabricated within the well-distributed pores of anodic aluminium oxide (AAO) template by a simple chemical method. The photoluminescence (PL) and field emission (FE) properties of the AAO/ZnO NWs hybrid structure were investigated in detail. The hybrid nanostructure exhibits interesting PL characteristics. ZnO NWs exhibit UV emission at 378 nm and two prominent blue-green emissions at about 462 and 508 nm. Intense blue emission from the AAO template itself was observed at around 430 nm. Herein, for the first time we report the FE characteristics of the ZnO/AAO hybrid structure to show the influence of the AAO template on the FE property of the hybrid structure. It is found that the turn-on electric field of the vertically grown and aligned ZnO NWs within the pores of AAO template is lower than the entangled unaligned ZnO NWs extracted from the template. Although the AAO template exhibits no FE current but it helps to achieve better FE property of the ZnO NWs through better alignment. The turn-on electric field of aligned NWs was found to be 3 V μm−1 at a current of 0.1 μA. Results indicate that the AAO embedded ZnO NW hybrid structure may find useful applications in luminescent and field emission display devices.  相似文献   

19.
As one kind of new optoelectronic materials, ZnS:Mn nanoparticles/PVP composite nanofibers are prepared by the electrospinning technique successfully. SEM, XRD, FT-IR spectroscopy, photoluminescence and TEM measurements are employed in the study. By the method of annealing, the effect on the morphology and properties of the composite nanofibers is studied. After annealing treatment, the separating state of the nanofibers is improved obviously, ZnS:Mn nanoparticles are well dispersed in the nanofiber, the PL peak originated from 4T16A1 transition of Mn ions shifts from 605 nm to 599 nm. The existence of orange emission peaks confirms that ZnS:Mn nanoparticles are formed in the fibers.  相似文献   

20.
Multi-walled carbon nanotubes (MWNTs) were high-energy milled for 2 h in texanol after a polycarboxylic acid polymeric dispersant had been added in order to enhance the dispersion. The degree of MWNT dispersion was significantly enhanced by high-energy milling compared to the intact sample, which increased the density of surface-exposed MWNTs with a screen-printed paste. However, the emission properties of high-energy milled MWNTs did not show such a high emission current density relative to their increased surface-exposed density. Further investigation using Raman spectroscopy and X-ray diffraction evidenced the milling-induced MWNT damage, which explained the relatively lower emission current density of high-energy milled MWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号