首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a simple combinatorial approximation algorithm for finding a shortest (simple) cycle in an undirected graph. Given an adjacency-list representation of an undirected graph G with n vertices and unknown girth k, our algorithm returns with high probability a cycle of length at most 2k for even k and 2k+2 for odd k, in time . Thus, in general, it yields a approximation. For a weighted, undirected graph, with non-negative edge weights in the range {1,2,…,M}, we present a simple combinatorial 2-approximation algorithm for a minimum weight (simple) cycle that runs in time O(n2logn(logn+logM)).  相似文献   

2.
3.
For a positive integer d, an L(d,1)-labeling f of a graph G is an assignment of integers to the vertices of G such that |f(u)−f(v)|?d if uvE(G), and |f(u)−f(v)|?1 if u and u are at distance two. The span of an L(d,1)-labeling f of a graph is the absolute difference between the maximum and minimum integers used by f. The L(d,1)-labeling number of G, denoted by λd,1(G), is the minimum span over all L(d,1)-labelings of G. An L(d,1)-labeling of a graph G is an L(d,1)-labeling of G which assigns different labels to different vertices. Denote by the L(d,1)-labeling number of G. Georges et al. [Discrete Math. 135 (1994) 103-111] established relationship between the L(2,1)-labeling number of a graph G and the path covering number of Gc, the complement of G. In this paper we first generalize the concept of the path covering of a graph to the t-group path covering. Then we establish the relationship between the L(d,1)-labeling number of a graph G and the (d−1)-group path covering number of Gc. Using this result, we prove that and for bipartite graphs G can be computed in polynomial time.  相似文献   

4.
Okbin Lee 《Information Sciences》2006,176(15):2148-2160
In order to maintain load balancing in a distributed network, each node should obtain workload information from all the nodes in the network. To accomplish this, this processing requires O(v2) communication complexity, where v is the number of nodes. First, we present a new synchronous dynamic distributed load balancing algorithm on a (vk + 1, 1)-configured network applying a symmetric balanced incomplete block design, where v = k2 + k + 1. Our algorithm designs a special adjacency matrix and then transforms it to (vk + 1, 1)-configured network for an efficient communication. It requires only communication complexity and each node receives workload information from all the nodes without redundancy since each link has the same amount of traffic for transferring workload information. Later, this algorithm is revised for distributed networks and is analyzed in terms of efficiency of load balancing.  相似文献   

5.
Let G=(V,E) be a finite graph, and be any function. The Local Search problem consists in finding a local minimum of the function f on G, that is a vertex v such that f(v) is not larger than the value of f on the neighbors of v in G. In this note, we first prove a separation theorem slightly stronger than the one of Gilbert, Hutchinson and Tarjan for graphs of constant genus. This result allows us to enhance a previously known deterministic algorithm for Local Search with query complexity , so that we obtain a deterministic query complexity of , where n is the size of G, d is its maximum degree, and g is its genus. We also give a quantum version of our algorithm, whose query complexity is of . Our deterministic and quantum algorithms have query complexities respectively smaller than the algorithm Randomized Steepest Descent of Aldous and Quantum Steepest Descent of Aaronson for large classes of graphs, including graphs of bounded genus and planar graphs.  相似文献   

6.
7.
We consider the minimum maximal matching problem, which is NP-hard (Yannakakis and Gavril (1980) [18]). Given an unweighted simple graph G=(V,E), the problem seeks to find a maximal matching of minimum cardinality. It was unknown whether there exists a non-trivial approximation algorithm whose approximation ratio is less than 2 for any simple graph. Recently, Z. Gotthilf et al. (2008) [5] presented a -approximation algorithm, where c is an arbitrary constant.In this paper, we present a -approximation algorithm based on an LP relaxation, where χ(G) is the edge-coloring number of G. Our algorithm is the first non-trivial approximation algorithm whose approximation ratio is independent of |V|. Moreover, it is known that the minimum maximal matching problem is equivalent to the edge dominating set problem. Therefore, the edge dominating set problem is also -approximable. From edge-coloring theory, the approximation ratio of our algorithm is , where Δ(G) represents the maximum degree of G. In our algorithm, an LP formulation for the edge dominating set problem is used. Fujito and Nagamochi (2002) [4] showed the integrality gap of the LP formulation for bipartite graphs is at least . Moreover, χ(G) is Δ(G) for bipartite graphs. Thus, as far as an approximation algorithm for the minimum maximal matching problem uses the LP formulation, we believe our result is the best possible.  相似文献   

8.
9.
Let T=(V,E) be a tree with n nodes such that each node v is associated with a value-weight pair(valv,wv), where the valuevalv is a real number and the weightwv is a positive integer. The density of a path P=〈v1,v2,…,vk〉 is defined as . The weight of P, denoted by w(P), is . Given a tree of n nodes, two integers wmin and wmax, and a length lower bound L, we present a pseudo-polynomial O(wmaxnL)-time algorithm to find a maximum-density path P in T such that wmin?w(P)?wmax and the length of P is at least L.  相似文献   

10.
An edge covering coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least one time. The maximum integer k such that G has an edge covering coloring with k colors is called the edge covering chromatic index of G and denoted by . It is known that for any graph G with minimum degree δ(G), it holds that . Based on the subgraph of G induced by the vertices of minimum degree, we find a new sufficient condition for a graph G to satisfy . This result substantially extends a result of Wang et al. in 2006.  相似文献   

11.
In an undirected graph, paths P1,P2,…,Pk are induced disjoint if each one of them is chordless (i.e., is an induced path) and any two of them have neither common nodes nor adjacent nodes. This paper investigates the Maximum Induced Disjoint Paths (MIDP) problem: in an undirected graph G=(V,E), given k node pairs {s1,t1},…,{sk,tk}, connect maximum number of these node pairs via induced disjoint paths. Till now, the only things known about MIDP are: i) it is NP-hard; ii) it is NP-hard even when k=2; iii) it can be solved in polynomial time when k is a fixed constant and the given graph is a directed planar graph (Kobayashi, 2009 [9]). This paper proves that for general k and any ?>0, it is NP-hard to approximate MIDP within m1/2−?, where m=|E|. Two algorithms for MIDP are given by this paper: a greedy algorithm whose approximation ratio is and an on-line algorithm which has a good lower bound.  相似文献   

12.
13.
The k-clique problem is a cornerstone of NP-completeness and parametrized complexity. When k is a fixed constant, the asymptotically fastest known algorithm for finding a k-clique in an n-node graph runs in O(n0.792k) time (given by Nešet?il and Poljak). However, this algorithm is infamously inapplicable, as it relies on Coppersmith and Winograd's fast matrix multiplication.We present good combinatorial algorithms for solving k-clique problems. These algorithms do not require large constants in their runtime, they can be readily implemented in any reasonable random access model, and are very space-efficient compared to their algebraic counterparts. Our results are the following:
We give an algorithm for k-clique that runs in O(nk/(εlogn)k−1) time and O(nε) space, for all ε>0, on graphs with n nodes. This is the first algorithm to take o(nk) time and O(nc) space for c independent of k.
Let k be even. Define a k-semiclique to be a k-node graph G that can be divided into two disjoint subgraphs U={u1,…,uk/2} and V={v1,…,vk/2} such that U and V are cliques, and for all i?j, the graph G contains the edge {ui,vj}. We give an time algorithm for determining if a graph has a k-semiclique. This yields an approximation algorithm for k-clique, in the following sense: if a given graph contains a k-clique, then our algorithm returns a subgraph with at least 3/4 of the edges in a k-clique.
  相似文献   

14.
A 2-dipath k-coloring f of an oriented graph is a mapping from to the color set {1,2,…,k} such that f(x)≠f(y) whenever two vertices x and y are linked by a directed path of length 1 or 2. The 2-dipath chromatic number of is the smallest k such that has a 2-dipath k-coloring. In this paper we prove that if is an oriented Halin graph, then . There exist infinitely many oriented Halin graphs such that .  相似文献   

15.
16.
17.
In a load balancing algorithm [O. Lee, M. Anshel, I. Chung, Design of an efficient load balancing algorithm on distributed networks by employing symmetric balanced incomplete block design, IEE Proceedings - Communications 151 (6) (2004) 535-538] based on the SBIBD (Symmetric Balanced Incomplete Block Design), each node receives global workload information by only two round message exchange with traffic overhead, where v is the number of nodes. It is very efficient and works well only when v=p2+p+1 is used for a prime number p. In this paper, we generated a special incidence structure using the SBIBD and then propose a new load balancing algorithm, which executes well for an arbitrary number of nodes. To accomplish this, we add a number of links to nodes in order for each node to receive more than 80% of the workload information by two round message exchange. For performance of our algorithm, we carried out an experiment for the number of nodes, w, which was up to 5000. Traffic overhead is less than in a round and standard deviation of traffic overhead shows that each node has a mostly well-balanced amount of traffic.  相似文献   

18.
An important optimization problem in the design of cellular networks is to assign sets of frequencies to transmitters to avoid unacceptable interference. A cellular network is generally modeled as a subgraph of the infinite triangular lattice. The distributed frequency assignment problem can be abstracted as a multicoloring problem on a weighted hexagonal graph, where the weight vector represents the number of calls to be assigned at vertices. In this paper we present a 2-local distributed algorithm for multicoloring triangle-free hexagonal graphs using only the local clique numbers ω1(v) and ω2(v) at each vertex v of the given hexagonal graph, which can be computed from local information available at the vertex. We prove that the algorithm uses no more than colors for any triangle-free hexagonal graph G, without explicitly computing the global clique number ω(G). Hence the competitive ratio of the algorithm is 5/4.  相似文献   

19.
Given an underlying communication network represented as an edge-weighted graph G=(V,E), a source node sV, a set of destination nodes DV, and a capacity k which is a positive integer, the capacitated multicast tree routing problem asks for a minimum cost routing scheme for source s to send data to all destination nodes, under the constraint that in each routing tree at most k destination nodes are allowed to receive the data copies. The cost of the routing scheme is the sum of the costs of all individual routing trees therein. Improving on our previous approximation algorithm for the problem, we present a new algorithm which achieves a worst case performance ratio of , where ρ denotes the best known approximation ratio for the Steiner minimum tree problem. Since ρ is about 1.55 at the writing of the paper, the ratio achieved by our new algorithm is less than 3.4713. In comparison, the previously best ratio was .  相似文献   

20.
Generalized cubes are a subclass of hypercube-like networks, which include some hypercube variants as special cases. Let θG(k) denote the minimum number of nodes adjacent to a set of k vertices of a graph G. In this paper, we prove for each n-dimensional generalized cube and each integer k satisfying n+2?k?2n. Our result is an extension of a result presented by Fan and Lin [J. Fan, X. Lin, The t/k-diagnosability of the BC graphs, IEEE Trans. Comput. 54 (2) (2005) 176-184].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号