首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In this paper, we first show how a certain ordering of vertices, called bicompatible elimination ordering (BCO), of a proper interval graph can be used to solve efficiently several problems in proper interval graphs. We, then, propose an NC parallel algorithm (i.e., polylogarithmic-time employing a polynomial number of processors) in SIMD CRCW PRAM (Single Instruction Stream Multiple Data Stream Concurrent Read Concurrent Write Parallel Random Access Machine) model of parallel computation to compute a BCO of a proper interval graph. To the best of our knowledge, this is the first NC parallel algorithm to compute a BCO of a proper interval graph.  相似文献   

2.
The average distance of a connected graph G is the average of the distances between all pairs of vertices of G. We present a linear time algorithm that determines, for a given interval graph G, a spanning tree of G with minimum average distance (MAD tree). Such a tree is sometimes referred to as a minimum routing cost spanning tree.  相似文献   

3.
Given an arbitrary graph G=(V,E) and a proper interval graph H=(V,F) with EF we say that H is a proper interval completion of G. The graph H is called a minimal proper interval completion of G if, for any sandwich graph H=(V,F) with EFF, H is not a proper interval graph. In this paper we give a O(n+m) time algorithm computing a minimal proper interval completion of an arbitrary graph. The output is a proper interval model of the completion.  相似文献   

4.
We define a perfect coloring of a graph G as a proper coloring of G such that every connected induced subgraph H of G uses exactly ω(H) many colors where ω(H) is the clique number of H. A graph is perfectly colorable if it admits a perfect coloring. We show that the class of perfectly colorable graphs is exactly the class of perfect paw-free graphs. It follows that perfectly colorable graphs can be recognized and colored in linear time.  相似文献   

5.
A vertex coloring c:V→{1,2,…,t} of a graph G=(V,E) is a vertex t-ranking if for any two vertices of the same color every path between them contains a vertex of larger color. The vertex ranking number χr(G) is the smallest value of t such that G has a vertex t-ranking. A χr(G)-ranking of G is said to be an optimal vertex ranking. In this paper, we present an O(|V|+|E|) time algorithm for finding an optimal vertex ranking of a starlike graph G=(V,E). Our result implies that an optimal vertex ranking of a split graph can be computed in linear time.  相似文献   

6.
In a graph G=(V,E), a subset FV(G) is a feedback vertex set of G if the subgraph induced by V(G)?F is acyclic. In this paper, we propose an algorithm for finding a small feedback vertex set of a star graph. Indeed, our algorithm can derive an upper bound to the size of the feedback vertex set for star graphs. Also by applying the properties of regular graphs, a lower bound can easily be achieved for star graphs.  相似文献   

7.
A set S?V is a power dominating set (PDS) of a graph G=(V,E) if every vertex and every edge in G can be observed based on the observation rules of power system monitoring. The power domination problem involves minimizing the cardinality of a PDS of a graph. We consider this combinatorial optimization problem and present a linear time algorithm for finding the minimum PDS of an interval graph if the interval ordering of the graph is provided. In addition, we show that the algorithm, which runs in Θ(nlogn) time, where n is the number of intervals, is asymptotically optimal if the interval ordering is not given. We also show that the results hold for the class of circular-arc graphs.  相似文献   

8.
A homogeneous set is a non-trivial module of a graph, i.e., a non-unitary, proper subset H of a graph's vertices such that all vertices in H have the same neighbors outside H. Given two graphs G1(V,E1), G2(V,E2), the Homogeneous Set Sandwich Problem asks whether there exists a sandwich graph GS(V,ES), E1ESE2, which has a homogeneous set. Recently, Tang et al. [Inform. Process. Lett. 77 (2001) 17-22] proposed an interesting O(?1n2) algorithm for this problem, which has been considered its most efficient algorithm since. We show the incorrectness of their algorithm by presenting three counterexamples.  相似文献   

9.
Given a set of n intervals representing an interval graph, the problem of finding a maximum matching between pairs of disjoint (nonintersecting) intervals has been considered in the sequential model. In this paper we present parallel algorithms for computing maximum cardinality matchings among pairs of disjoint intervals in interval graphs in the EREW PRAM and hypercube models. For the general case of the problem, our algorithms compute a maximum matching in O( log 3 n) time using O(n/ log 2 n) processors on the EREW PRAM and using n processors on the hypercubes. For the case of proper interval graphs, our algorithm runs in O( log n ) time using O(n) processors if the input intervals are not given already sorted and using O(n/ log n ) processors otherwise, on the EREW PRAM. On n -processor hypercubes, our algorithm for the proper interval case takes O( log n log log n ) time for unsorted input and O( log n ) time for sorted input. Our parallel results also lead to optimal sequential algorithms for computing maximum matchings among disjoint intervals. In addition, we present an improved parallel algorithm for maximum matching between overlapping intervals in proper interval graphs. Received November 20, 1995; revised September 3, 1998.  相似文献   

10.
The radio frequency assignment problem is to minimize the number of frequencies used by transmitters with no interference in radio communication networks; it can be modeled as the minimum vertex coloring problem on unit disk graphs. In this paper, we consider the on-line first-fit algorithm for the problem and show that the competitive ratio of the algorithm for the unit disk graph G with χ(G)=2 is 3, where χ(G) is the chromatic number of G. Moreover, the competitive ratio of the algorithm for the unit disk graph G with χ(G)>2 is at least 4−3/χ(G). The average performance for the algorithm is also discussed in this paper.  相似文献   

11.
The disk dimension of a planar graph G is the least number k for which G embeds in the plane minus k open disks, with every vertex on the boundary of some disk. Useful properties of graphs with a given disk dimension are derived, leading to an algorithm to obtain an outerplanar subgraph of a graph with disk dimension k by removing at most 2k−2 vertices. This reduction is used to obtain linear-time exact and approximation algorithms on graphs with fixed disk dimension. In particular, a linear-time approximation algorithm is presented for the pathwidth problem.  相似文献   

12.
Finding a dominating set of minimum cardinality is an NP-hard graph problem, even when the graph is bipartite. In this paper we are interested in solving the problem on graphs having a large independent set. Given a graph G with an independent set of size z, we show that the problem can be solved in time O(2nz), where n is the number of vertices of G. As a consequence, our algorithm is able to solve the dominating set problem on bipartite graphs in time O(2n/2). Another implication is an algorithm for general graphs whose running time is O(n1.7088).  相似文献   

13.
Given a class C of graphs, a graph G=(V,E) is said to be a C-probe graph if there exists a stable (i.e., independent) set of vertices XV and a set F of pairs of vertices of X such that the graph G=(V,EF) is in the class C. Recently, there has been increasing interest and research on a variety of C-probe graph classes, such as interval probe graphs, chordal probe graphs and chain probe graphs.In this paper we focus on chordal-bipartite probe graphs. We prove a structural result that if B is a bipartite graph with no chordless cycle of length strictly greater than 6, then B is chordal-bipartite probe if and only if a certain “enhanced” graph B is a chordal-bipartite graph. This theorem is analogous to a result on interval probe graphs in Zhang (1994) [18] and to one on chordal probe graphs in Golumbic and Lipshteyn (2004) [11].  相似文献   

14.
In this paper we study the following NP-complete problem: given an interval graph G = (V,E) , find a node p -coloring such that the cost is minimal, where denotes a partition of V whose subsets are ordered by nonincreasing cardinality. We present an O(m χ (G) + n log n) time ε -approximate algorithm (ε < 2) to solve the problem, where n , m , and χ #(G) are the number of nodes of the interval graph, its number of cliques, and its chromatic number, respectively. The algorithm is shown to solve the problem exactly on some classes of interval graphs, namely, the proper and the containment interval graphs, and the intersection graphs of sets of ``short' intervals. The problem of determining the minimum number of colors needed to achieve the minimum over all p -colorings of G is also addressed. Received February 1, 1996; revised August 22, 1997.  相似文献   

15.
In the Intervalizing Coloured Graphs problem, one must decide for a given graph G = (V, E) with a proper vertex colouring of G whether G is the subgraph of a properly coloured interval graph. For the case that the number of colors is fixed, we give an exact algorithm that uses \(2^{\mathcal {O}(n/\log n)}\) time. We also give an \(\mathcal {O}^{\ast }(2^{n})\) algorithm for the case that the number of colors is not fixed.  相似文献   

16.
An acyclic k-coloring of a graph G is a proper vertex coloring of G, which uses at most k colors, such that the graph induced by the union of every two color classes is a forest. In this note, we prove that every graph with maximum degree six is acyclically 11-colorable, thus improving the main result of Yadav et al. (2009) [11].  相似文献   

17.
Bee colony optimization (BCO) is a relatively new meta-heuristic designed to deal with hard combinatorial optimization problems. It is biologically inspired method that explores collective intelligence applied by the honey bees during nectar collecting process. In this paper we apply BCO to the p-center problem in the case of symmetric distance matrix. On the contrary to the constructive variant of the BCO algorithm used in recent literature, we propose variant of BCO based on the improvement concept (BCOi). The BCOi has not been significantly used in the relevant BCO literature so far. In this paper it is proved that BCOi can be a very useful concept for solving difficult combinatorial problems. The numerical experiments performed on well-known benchmark problems show that the BCOi is competitive with other methods and it can generate high-quality solutions within negligible CPU times.  相似文献   

18.
Let c be a proper edge coloring of a graph G. If there exists no bicolored cycle in G with respect to c, then c is called an acyclic edge coloring of G. Let G be a planar graph with maximum degree Δ and girth g. In Dong and Xu (2010) [8], Dong and Xu proved that G admits an acyclic edge coloring with Δ(G) colors if Δ?8 and g?7, or Δ?6 and g?8, or Δ?5 and g?9, or Δ?4 and g?10, or Δ?3 and g?14. In this note, we fix a small gap in the proof of Dong and Xu (2010) [8], and generalize the above results to toroidal graphs.  相似文献   

19.
A minus (respectively, signed) clique-transversal function of a graph G=(V,E) is a function (respectively, {−1,1}) such that uCf(u)?1 for every maximal clique C of G. The weight of a minus (respectively, signed) clique-transversal function of G is f(V)=vVf(v). The minus (respectively, signed) clique-transversal problem is to find a minus (respectively, signed) clique-transversal function of G of minimum weight. In this paper, we present a unified approach to these two problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. We also prove that the signed clique-transversal problem is NP-complete for chordal graphs and planar graphs.  相似文献   

20.
An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. The acyclic chromatic index of a graph G, denoted by α(G), is the minimum number k such that G admits an acyclic edge coloring using k colors. Let G be a plane graph with maximum degree Δ and girth g. In this paper, we prove that α(G)=Δ(G) if one of the following conditions holds: (1) Δ?8 and g?7; (2) Δ?6 and g?8; (3) Δ?5 and g?9; (4) Δ?4 and g?10; (5) Δ?3 and g?14. We also improve slightly a result of A. Fiedorowicz et al. (2008) [7] by showing that every triangle-free plane graph admits an acyclic edge coloring using at most Δ(G)+5 colors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号