首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 470 毫秒
1.
对受滑动及侧滑影响的移动机器人轨迹跟踪控制问题进行研究。在动力学部分,通过模糊系统逼近系统中的未知非线性,H_∞控制对滑动和侧滑干扰因素的补偿,利用Lyapunov函数推导出模糊参数的自适应律,设计出基于动力学的自适应模糊控制器。在运动学部分,设计逆运动学控制器,处理移动机器人实际位置与期望位置的误差,得到移动机器人运动的期望速度。将逆运动学控制器与自适应模糊控制器级联,并通过Lyapunov方法证明控制系统的稳定性。与自适应动力学控制器进行比较。仿真结果表明:在滑动及侧滑的影响下提出的策略具有较好的轨迹跟踪性能。  相似文献   

2.
三轮驱动移动机器人轨迹跟踪控制   总被引:1,自引:0,他引:1  
张国良  安雷  汤文俊 《计算机应用》2011,31(8):2293-2296
针对三轮驱动移动机器人在轨迹跟踪控制过程中运动不平滑的问题,建立了移动机器人在一定运动约束条件下的运动学模型。根据移动机器人位姿误差微分方程的描述,设计了基于后退时变状态反馈方法的移动机器人轨迹跟踪控制器。基于李雅普诺夫方法,对轨迹跟踪控制器的稳定性进行了分析,证明了该控制器能够保证闭环系统全局一致渐进稳定。仿真结果验证了运动学模型的正确性,以及轨迹跟踪控制器的有效性。  相似文献   

3.
吴孔逸  霍伟 《控制与决策》2010,25(12):1769-1774
研究不确定非完整移动机器人Leader/Follower编队动力学控制问题,对Follower提出了自适应队形跟踪控制方法.首先,基于队形方程设计了运动学队形跟踪控制器,使用Backstepping技术扩展出队形跟踪误差动力学方程;然后,利用自适应模糊系统逼近其不确定项,构造了间接自适应模糊动力学队形跟踪控制器;最后,证明了队形跟踪误差可收敛到原点的小邻域内.仿真结果验证了所提出控制策略的有效性.  相似文献   

4.
多机械臂的精准协同控制已成为当前机器人领域的研究难点,为实现双机械臂精准控制,通过建立双机械臂动力学模型,采用时间延时估计简化机械臂动力学模型,在保证控制系统稳定性的前提下,引入自适应模糊滑模控制器实现对估计误差的修正和补偿,设计基于时间延时估计和自适应模糊滑模控制的双机械臂协同阻抗控制器,实现双机械臂协同操作的末端轨迹控制以及接触力精准控制.最后,将该控制器应用于两台六自由度机械臂仿真平台,实现双臂夹取和搬运同一目标物体的操作,通过与其他控制器进行对比实验,表明所设计的控制器具有响应快、无抖震、精度高的特点.  相似文献   

5.
轮式移动机器人是一种典型的非完整约束系统.基于反步法提出一种自适应扩展控制器,对含有未知参数的非完整轮式移动机器人动力学系统进行轨迹跟踪控制并且Lyapunov稳定性理论保证跟踪误差渐近收敛到零.为了克服速度跳变产生滑动,加入了神经动力学模型对控制器进行改进.以两驱动轮移动机器人为例,利用运动学自适应控制器设计出转矩控制器,有效解决了不确定非完整轮式移动机器人动力学系统的轨迹跟踪问题.仿真结果证明该方法的正确性和有效性.  相似文献   

6.
为实现Stewart平台的高精度运动控制,设计了基于运动学模型的运动控制系统。在工作空间中使用梯形速度曲线进行轨迹规划,通过位置反解得到关节空间中各支腿的规划轨迹,设计位置—速度双环控制器控制支腿跟踪各自轨迹。为抑制外部扰动,提高鲁棒性,使用基于模型辅助线性扩张状态观测器的自抗扰控制器作为速度环控制器。为在保证轨迹跟踪精度的同时,加快系统镇定速度,使用分段积分重置PI控制器作为位置环控制器。将所设计的控制器应用到实际控制系统中,并进行了运动控制实验。实验表明:在所设计控制系统的控制下,平台运行平稳,并能够较快稳定到目标位姿。  相似文献   

7.
针对非连续路段下的轨迹跟踪问题,设计了基于观测型的预测控制器。首先建立了移动机器人的运动学模型,根据机器人的运动学模型得出了其位姿误差微分方程;然后在轨迹跟踪问题的基础上,设计了系统的观测模型,通过将预测控制器与系统的观测模型结合,设计了观测型预测控制器;最后再MATLAB环境下,利用本文所设计的控制器对移动机器人在非连续路段下的轨迹跟踪问题进行仿真,并将仿真结果与PID控制器控制的仿真结果进行对比,由仿真结果可以看出,本文所设计的控制器具有很好的鲁棒性、快速性及稳定性,可适用于移动机器人的轨迹跟踪的研究。  相似文献   

8.
针对PHANTOM Omni机器人的位置轨迹跟踪问题,采用了一种基于模糊逻辑的自适应模糊滑模控制方案。利用滑模控制中的切换函数作为输入,根据模糊系统的逼近能力设计控制器,并基于李雅谱诺夫方法设计自适应律对控制器所需参数进行实时调节。仿真中将其与传统的滑模控制进行了比较,仿真结果表明:自适应模糊滑模控制能使PHANTOM Omni机器人更好地实现期望的位置轨迹跟踪并有效地减轻抖振现象,从而证明了该方法在PHANTOM Omni机器人上实施的可行性。  相似文献   

9.
针对含运动学未知参数以及动力学模型不确定的非完整轮式移动机器人轨迹跟踪问题,基于Radical Basis Function(径向基函数)神经网络,提出了一种鲁棒自适应控制器.首先,考虑移动机器人运动学参数未知的情况,提出了一种含自适应参数的运动学控制器,用以补偿参数不确定性导致的系统误差;其次,利用神经网络控制技术,对于机器人在移动中动力学模型不确定问题,提出了一种具有鲁棒性的动力学控制器,使得移动机器人可以在不知道具体动力学模型的情况下跟踪到目标轨迹;最后利用Lyapunov稳定性理论证明了整个系统的稳定性.通过数值仿真验证了所设计的控制器的可行性.  相似文献   

10.
在非完整移动机器人轨迹跟踪问题中,针对机器人运动学与动力学模型的参数和非参数不确定性,提出了一种混合神经网络鲁棒自适应轨迹跟踪控制器,该控制器由运动学控制器和动力学控制器两部分组成;其中,采用了参数自适应的径向基神经网络对运动学模型的未知部分进行了建模,并采用权值在线调整的单层神经网络和自适应鲁棒控制项构成了动力学控制器;基于Lyapunov方法的设计过程保证了系统的稳定性和收敛性,仿真结果证明了算法的有效性。  相似文献   

11.
In this article, an adaptive neural controller is developed for cooperative multiple robot manipulator system carrying and manipulating a common rigid object. In coordinated manipulation of a single object using multiple robot manipulators simultaneous control of the object motion and the internal force exerted by manipulators on the object is required. Firstly, an integrated dynamic model of the manipulators and the object is derived in terms of object position and orientation as the states of the derived model. Based on this model, a controller is proposed that achieves required trajectory tracking of the object as well as tracking of the desired internal forces arising in the system. A feedforward neural network is employed to learn the unknown dynamics of robot manipulators and the object. It is shown that the neural network can cope with the unknown nonlinearities through the adaptive learning process and requires no preliminary offline learning. The adaptive learning algorithm is derived from Lyapunov stability analysis so that both error convergence and tracking stability are guaranteed in the closed loop system. Finally, simulation studies and analysis are carried out for two three-link planar manipulators moving a circular disc on specified trajectory.  相似文献   

12.
This paper presents a method for realizing cooperative control of dual-arm manipulators (RM-10A by Remotec Inc.) handling the same object in the presence of dynamic parameter uncertainties of both robots and object. When multiple robots handle the same object, both the position and the internal forces between the robots and the object should be controlled. In this paper, a sliding mode controller is derived for trajectory tracking of object position and internal forces. To show the effectiveness of the proposed controller, numerical simulations are performed for 12 axis dual-arm manipulators. This work was presented, in part, at the Third International Symposium on Artificial Life and Robotics, Oita, Japan, January 19–21, 1998  相似文献   

13.
郑泽伟  霍伟 《控制与决策》2011,26(10):1479-1484
基于轨迹线性化控制(TLC)理论提出了一种全驱动平流层飞艇轨迹跟踪控制设计的新方法.该方法由期望姿态生成、运动学控制和动力学控制3部分组成.首先利用期望轨迹的Frenet标架构造期望的艇体坐标系,导出期望姿态的计算公式;然后将系统运动学部分按照移动和转动分解,动力学部分按纵向与横向分解,将整个系统划分为4个回路,并分别用TLC理论进行控制设计,避免了设计时对全系统求逆的困难;最后给出了控制方法的计算步骤和平流层飞艇跟踪典型轨迹的仿真结果,结果验证了所提出方法的可行性.  相似文献   

14.
In this paper, we present two-time scale control design for trajectory tracking of two cooperating planar rigid robots moving a flexible beam, which does not require vibration measurement for the beam. First, the kinematics and dynamics of the robots and the object are derived. Then, using the relations between different forces acting on the object by the manipulators’ end-effectors, dynamics equations of the robots and the object are combined. The resulting equations show that the coupled dynamics including beam vibration and the rigid motion take place in two different time domains. By applying two-time scale control theory on the combined dynamics, a composite control scheme is elaborated which makes the beam orientation and its center of mass position track a desired trajectory while suppressing the beam vibration. For the controller algorithm, first a slow controller is utilized for the slow (rigid) subsystem and then a fast stabilizing controller is considered for the fast (flexible) subsystem. To avoid requiring measurement of beam vibration for the fast control law, a linear observer is also designed. The simulation results show the efficiency of the proposed control scheme.  相似文献   

15.
This paper presents an approach to adaptive trajectory tracking of mobile robots which combines a feedback linearization based on a nominal model and a RBF-NN adaptive dynamic compensation. For a robot with uncertain dynamic parameters, two controllers are implemented separately: a kinematics controller and an inverse dynamics controller. The uncertainty in the nominal dynamics model is compensated by a neural adaptive feedback controller. The resulting adaptive controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. The analysis of the RBF-NN approximation error on the control errors is included. Finally, the performance of the control system is verified through experiments.  相似文献   

16.
随着固定翼无人机飞行任务复杂化,为了实现高精度的空间曲线导航控制,基于L1-Navigation非线性导航控制算法,设计自适应模糊控制器优化固定翼无人机跟踪空间曲线导航控制方法。以球面上的空间八字曲线为例,对八字曲线建模,通过坐标转换求得目标航点位置来计算无人机飞行加速度。为了优化加速度控制无人机跟踪空间曲线性能,在L1-Navigation导航控制器中,针对增益系数设计一个双输入单输出模糊控制系统,以轨迹误差和轨迹误差变化率为输入量,以计算横向加速度的增益系数常数为输出量。最后,在Ardupilot飞控中进行飞行模拟实验,飞行实验表明,所提出方法能够精确跟踪空间曲线路径,并且有很好的自适应性。  相似文献   

17.
In this paper, a stable adaptive fuzzy-based tracking control is developed for robot systems with parameter uncertainties and external disturbance. First, a fuzzy logic system is introduced to approximate the unknown robotic dynamics by using adaptive algorithm. Next, the effect of system uncertainties and external disturbance is removed by employing an integral sliding mode control algorithm. Consequently, a hybrid fuzzy adaptive robust controller is developed such that the resulting closed-loop robot system is stable and the trajectory tracking performance is guaranteed. The proposed controller is appropriate for the robust tracking of robotic systems with system uncertainties. The validity of the control scheme is shown by computer simulation of a two-link robotic manipulator.  相似文献   

18.
In this paper, a nonlinear controller design for an omni-directional mobile robot is presented. The robot controller consists of an outer-loop (kinematics) controller and an inner-loop (dynamics) controller, which are both designed using the Trajectory Linearization Control (TLC) method based on a nonlinear robot dynamic model. The TLC controller design combines a nonlinear dynamic inversion and a linear time-varying regulator in a novel way, thereby achieving robust stability and performance along the trajectory without interpolating controller gains. A sensor fusion method, which combines the onboard sensor and the vision system data, is employed to provide accurate and reliable robot position and orientation measurements, thereby reducing the wheel slippage induced tracking error. A time-varying command filter is employed to reshape an abrupt command trajectory for control saturation avoidance. The real-time hardware-in-the-loop (HIL) test results show that with a set of fixed controller design parameters, the TLC robot controller is able to follow a large class of 3-degrees-of-freedom (3DOF) trajectory commands accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号