共查询到19条相似文献,搜索用时 45 毫秒
1.
2.
针对常用方法无法准确度量多元时间序列相似程度的问题,提出一种基于多维分段和动态权重动态时间弯曲距离的多元时间序列相似性度量方法.首先对多元时间序列进行多维分段拟合,选取拟合段的斜率、均值和时间跨度作为每一段的特征,在对多元时间序列降维的同时也保留了变量之间的相关性;然后提出一种动态权重动态时间弯曲距离度量方法计算多元时间序列特征矩阵之间的距离,避免了直接使用动态时间弯曲距离造成的畸形匹配问题.最终实验结果也验证了该方法在多种类型的数据集上都能取得较高的度量精度,表明了该方法的有效性. 相似文献
3.
为了更好地体现时间序列的形态特征,并探索更适合于较长时间序列之间相似性度量的方法,在动态时间弯曲算法的基础上进行改进,提出了基于分层动态时间弯曲的序列相似性度量方法。对时间序列进行多层次分段,并从分段中均匀抽取相对应的层次分段子序列,然后将层次分段子序列抽象为三维空间的点(反映了分段子序列的均值、长度和趋势)进行相似性度量,最后综合各个层次的相似性度量作为结果。实验表明,在参数设置合理的情况下,此方法能获得较高的序列相似性度量准确度和效率。 相似文献
4.
针对动态时间弯曲方法计算时间过长的问题,提出增量动态时间弯曲来度量较长时间序列之间的相似性。首先利用动态时间弯曲方法对历史时间序列数据进行相似性度量,得到相应的历史最优弯曲路径和路径中各元素的累积距离代价。其次,通过逆向弯曲度量方法完成当前序列数据 的相似性度量,结合历史数据信息找到与历史弯曲路径相交且度量时间序列距离为当前最小值的新路径,进而实现增量动态时间弯曲的相似性度量。该方法不仅具有良好的度量质量,还具有较高的时间效率。数值实验表明,对于大部分时间序列数据集,新方法的分类准确率和计算性能要优于经典动态时间弯曲。 相似文献
5.
面向相似性查询的时间序列距离度量方法述评 总被引:1,自引:0,他引:1
从一元时间序列和多元时间序列两个方面对当前提出的主要时间序列距离度量方法进行了述评.深入分析了各种算法的原理和特点,比较了算法对时间序列形变的支持情况以及时间复杂度.从客观上讲,各种算法之间并不具有绝对的优劣关系,每种算法的原理和特点各异,适用的问题领域也不一样.对于工程应用中选择时间序列距离度量方法具有指导意义,同时对于设计新的距离度量方法也具有参考价值. 相似文献
6.
为了进一步改善和提高基于模式的时间序列趋势相似性度量效果,在时间序列分段线性表示的基础上,依据分段子序列的均值及其线性拟合函数的导数符号,实现时间序列的分段模式化,以模式之间的异同性定义模式匹配距离,借鉴动态时间弯曲(Dynamic Time Warping,DTW)的动态规划原理,提出一种动态模式匹配方法(Dynamic Pattern Matching,DPM)。实验结果表明,该方法能够在不同压缩率条件下,准确度量等长时间序列的趋势相似性,而且时间消耗较低。时间序列不等长作为存在数据缺失的一种表现形式,该方法的度量效果与数据缺失比例之间的关系值得进一步的深入研究。 相似文献
7.
8.
9.
基于DTW的多元时间序列模式匹配方法 总被引:1,自引:0,他引:1
现有的模式匹配方法难以高效、准确地度量多元时间序列的相似性.本文对多元时间序列进行多维分段拟合,选取各个变量维度上拟合线段的倾斜角和时间跨度作为特征模式,进而提出一种基于DTW的多元时间序列模式匹配方法,并通过实验验证所提方法的有效性.实验结果表明,该模式匹配方法对时间跨度较大且体现一个连续、完整过程的多元时间序列具有较好的匹配效果;对时间跨度较小、体现状态点的多元时间序列也具有一定的匹配能力. 相似文献
10.
11.
现有的各种多元时间序列相似性搜索方法难以准确高效地完成搜索任务。提出了一种基于特征点分段的多元时间序列相似性搜索算法,提取所定义的用于分段的特征点,分段后将原时间序列转化为模式序列,该模式序列能够很好地保留原序列的全局形状特征,再用分层匹配的方法进行相似性搜索。实验结果表明,该方法能够有效刻画序列的全局形状特征,通过分层匹配保留局部的相似性,同时提高搜索准确率。 相似文献
12.
针对传统符号聚合近似方法在特征表示时容易忽略时间序列局部形态特征的局限性,以及动态时间弯曲在度量上的优势,提出一种基于数值符号和形态特征的时间序列相似性度量方法.将时间序列进行符号和形态的特征表示后,提出动态时间弯曲与符号距离结合的时间序列距离度量方法,使所提方法能够较好地反映时间序列数据数值分布和形态特征.实验结果表明,所提出的方法在时间序列数据挖掘中能够得到较好的分类效果,具有一定的优越性. 相似文献
13.
We propose a new method to calculate the similarity of time series based on piecewise linear approximation (PLA) and derivative dynamic time warping (DDTW). The proposed method includes two phases. One is the divisive approach of piecewise linear approximation based on the middle curve of original time series. Apart from the attractive results, it can create line segments to approximate time series faster than conventional linear approximation. Meanwhile, high dimensional space can be reduced into a lower one and the line segments approximating the time series are used to calculate the similarity. In the other phase, we utilize the main idea of DDTW to provide another similarity measure based on the line segments just we got from the first phase. We empirically compare our new approach to other techniques and demonstrate its superiority. 相似文献
14.
确定时间序列的相似性匹配方法都没有考虑数据的不确定性,而现实世界中诸如温度传感器等设备采集到的数据往往是不确定的,并且两条不确定时间序列之间的距离也是不确定的,所以现有的确定时间序列的相似性匹配方法不适用于这些领域。针对此问题,提出了基于统计学的规约算法,并且基于该算法提出了不确定时间序列相似性匹配的两种新型算法。在规约过程中,规约算法优化了不同背景下不确定时间序列的小概率点和奇异点的处理。在匹配过程中,首先提出了圆环匹配算法,它通过构建匹配圆环完成相似性匹配,并且通过多次重启提高相似性匹配的准确度和效率;然后在规约算法的基础上,提出了期望匹配的改进算法,它通过增加包络约束消除期望匹配算法中出现的误判问题。 相似文献
15.
16.
时间序列聚类分析是数据挖掘研究的一个重要内容。已有的聚类算法大多采用k均值对低维数据进行聚类,不能对高维多变量时间序列(MTS)数据进行有效聚类。提出一种高效的多变量时间序列聚类算法PCA-CLUSTER,首先利用主成分分析对MTS数据降维;选取MTS数据的主成分序列进行K近邻聚类分析。理论分析和实验结果表明算法可以有效解决MTS数据聚类问题。 相似文献
17.
18.
Parametric time series models for multivariate EEG analysis 总被引:1,自引:0,他引:1
19.
针对时间序列的全序列聚类展开,提出一种新的相似性度量——全局特征,即从时间序列的统计分布特征、非线性和Fourier频谱转换等3个方面提取11个全局特征构建特征向量。利用特征向量来描述原时间序列,不仅保留了大部分原有的信息,还能加快聚类计算的速度。经过大量的实验验证表明,基于全局特征提取的相似性度量能得到合理的聚类结果,特别是对经济领域的时间序列效果更为明显。例举了2个数据进行实验,并从主观和客观两个角度对聚类结果进行评估。 相似文献