共查询到18条相似文献,搜索用时 46 毫秒
1.
高维多目标优化问题是广泛存在于实际应用中的复杂优化问题,目前的研究方法大都限于进化算法.本文利用粒子群优化算法求解高维多目标优化问题,提出了一种基于r支配的多目标粒子群优化算法.采用r支配关系进行粒子的比较与选择,并结合粒子群优化算法收敛速度快的优势,使得算法在目标个数增加时仍保持较强的搜索能力;为了弥补由此造成的群体多样性的丢失,优化非r支配阈值的取值策略;此外,引入决策空间的拥挤距离测度,并给出新的外部存储器更新方法,从而进一步防止算法陷入局部最优.对多个基准测试函数的仿真结果表明所得解集在收敛性、多样性以及围绕参考点的分布性上均优于其他两种算法. 相似文献
2.
高维多目标优化问题由于具有巨大的目标空间使得一些经典的多目标优化算法面临挑战.提出一种基于自适应模糊支配的高维多目标粒子群算法MAPSOAF,该算法定义了一种自适应的模糊支配关系,通过对模糊支配的阈值自适应变化若干步长,在加强个体间支配能力的同时实现对种群选择压力的精细化控制,以改善算法的收敛性;其次,通过从外部档案集中选取扰动粒子,并在粒子速度更新公式中新增一扰动项以克服粒子群早熟收敛并改善个体分布的均匀性;另外,算法利用简化的Harmonic归一化距离评估个体的密度,在改善种群分布性的同时降低算法的计算代价.该算法与另外五种高性能的多目标进化算法在标准测试函数集DTLZ{1,2,4,5}上进行对比实验,结果表明该算法在收敛性和多样性方面总体上具有较显著的性能优势. 相似文献
3.
高维多目标优化问题(MAOP)会随着待优化问题维度的增加形成巨大的目标空间,导致在目标空间中非支配解的比例急剧增加,削弱了进化算法的选择压力,降低了进化算法对MAOP的求解效率。针对这一问题,提出一种以超球型支配关系降低种群中非支配解数量的粒子群优化(PSO)算法。算法以模糊支配策略来维持种群对MAOP的选择压力,并通过全局极值的选择和外部档案的维护来保持种群个体在目标空间中的分布。在标准测试集DTLZ和WFG上的仿真结果表明,所提算法在求解MAOP时具备较优的收敛性和分布性。 相似文献
4.
5.
6.
在具有不同Pareto前沿形状的优化问题上, 基于参考点的高维多目标进化算法表现出较差的通用性. 为了解决这个问题, 提出参考点自适应调整下评价指标驱动的高维多目标进化算法(Many-objective evolutionary algorithm driven by evaluation indicator under adaptive reference point adjustment, MaOEA-IAR). MaOEA-IAR提出Pareto前沿形状监测基础上的参考点自适应策略, 利用该策略选择一组候选解作为初始参考点; 然后通过曲线参数对参考点位置进行调整; 将最终得到的能够适应不同Pareto前沿的参考点用于计算增强的反世代距离指标, 基于指标值设计适应度函数作为选择标准. 实验证明提出的算法在处理各种Pareto前沿形状的优化问题时能获得较好的性能, 算法通用性高. 相似文献
7.
研究表明,现有的多目标进化算法在处理具有不同Pareto前沿的优化问题时难以有效平衡种群的收敛性与多样性.鉴于此,提出一种基于自适应参考向量和参考点的高维多目标进化算法(adaptive reference vector and reference point based many-objective evlolutionary algorithm, ARVRPMEA). ARVRPMEA主要利用种群稀疏性自适应调整参考向量和参考点以提高种群多样性,首先,生成均匀分布的参考向量子集和参考点子集,并利用该参考向量子集分解种群;然后,根据规模最大子种群中解的分布情况生成新的参考向量和参考点,直至满足参考向量集和参考点集规模;最后,为进一步提高种群收敛性,该算法结合指标进行环境选择以保存收敛性较高的个体进入下一代种群.实验结果表明, ARVRP算法在求解具有不同Pareto前沿的问题方面具有良好的性能. 相似文献
8.
针对巨量可选方案的群体决策问题,提出了一个新的基于参考点和投票规则的多目标粒子群优化算法。该算法把个体与参考点的支配关系或者距离作为一个重要因素,在选择引导者的锦标赛方法,局部最优更新规则,以及外部种群档案剪枝规则中都嵌入了基于支配关系或距离因素的投票规则,以找到群体决策解,并且提高搜索效率。仿真结果表明该算法有效。 相似文献
9.
为实现偏好与群体决策的结合应用,提出基于群体距离的多目标粒子群优化算法。通过调整解与参考点的群体距离引导粒子靠近偏好区域,运用格栅方法和改进的剪枝策略实现解在Pareto边界的均匀分布,求出与群体成员偏好相关的部分Pareto最优集,从而减少计算成本、加快收敛速度。实验结果表明,该算法得到的解更靠近真实Pareto前沿,且对不同个体决策成员都有效。 相似文献
10.
针对多目标优化算法在求解多模态多目标问题时存在Pareto解集不完整、收敛性差等缺点,提出一种基于参考点的多模态多目标粒子群算法(RPMOPSO)。利用佳点集原理初始化参考点以保证参考点的均匀分布性;引入参考点策略促使种群形成稳定的小生境以增加种群多样性;采用扩散机制改变粒子的飞行轨迹以捕捉到更多Pareto解。在十二个常用测试问题中比较六种算法的性能,结果表明,RPMOPSO在决策空间上具有良好的收敛能力,且能够找到更多的Pareto解。 相似文献
11.
结合粒子群算法提出一个城市消防点选址问题的研究模型.该算法利用局部寻优能力对初始粒子进行优化,并利用粒子群优化算法进行全局寻优. 相似文献
12.
13.
14.
粒子群优化算法在点模式匹配中的应用 总被引:1,自引:0,他引:1
点模式匹配技术是计算机视觉和模式识别领域中的一个重要课题.将每个点模式编码为一个称为粒子的实值向量,并利用两幅图像的灰度矩阵来构造粒子的适应度函数,提出一种基于粒子群优化算法的点模式匹配新算法.系统初始化为一组随机解,通过迭代使粒子在解空间中追随当前较优的粒子进行搜索,从而找到最优解.仿真实验结果证明算法的有效性. 相似文献
15.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
16.
基本粒子群优化算法(basic particle swarm optimization,简称bPSO)具有容易陷入局部极值,进化后期熟练速度慢,精度低等缺陷,而简化粒子群算法(simple particle swarm optimization,简称sPSO)在保证了熟练速度和精度的同时舍弃了速度项,使算法更加简练。本文提出了一种动态改变学习因子的简化粒子群算法。经过实验证明,该算法在寻优精度和收敛速度上具有明显的优势。 相似文献
17.
以保证全局收敛的随机微粒群算法为基础,文章提出了一种双群体随机微粒群算法——DB-SPSO。该方法采用两个群体同时进化,一个群体在进化过程中所出现的停止微粒由另一群体的微粒来代替,并和此群体中其余的微粒一起继续进化。通过对此算法的参数适用范围及收敛率进行讨论,给出了此算法的适用范围。其仿真结果表明:对于单峰函数和多峰函数,此算法都能够取得较好的优化效果。 相似文献
18.
粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 相似文献