首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Multiple exciton generation (MEG) in quantum dots (QDs), a process by which one absorbed photon generates multiple electron-hole pairs, has provided exciting possibilities for improving the energy conversion efficiency of photovoltaic and photocatalytic devices. However, implementing MEG in practical devices requires the extraction of multiple charge carriers before exciton-exciton annihilation and the development of materials with improved MEG efficiency. In this report, using PbS QD/methylene blue complexes as a QD/electron acceptor model system, we demonstrate that the presence of electron acceptors does not affect the MEG efficiency of QDs and all generated excitons can be dissociated by electron transfer to the acceptor, achieving MEG and multiple exciton dissociation efficiencies of 112%. We further demonstrate that these efficiencies are not affected by the charging of QDs.  相似文献   

2.
We report ultra-efficient multiple exciton generation (MEG) for single photon absorption in colloidal PbSe and PbS quantum dots (QDs). We employ transient absorption spectroscopy and present measurement data acquired for both intraband as well as interband probe energies. Quantum yields of 300% indicate the creation, on average, of three excitons per absorbed photon for PbSe QDs at photon energies that are four times the QD energy gap. Results indicate that the threshold photon energy for MEG in QDs is twice the lowest exciton absorption energy. We find that the biexciton effect, which shifts the transition energy for absorption of a second photon, influences the early time transient absorption data and may contribute to a modulation observed when probing near the lowest interband transition. We present experimental and theoretical values of the size-dependent interband transition energies for PbSe QDs. We present experimental and theoretical values of the size-dependent interband transition energies for PbSe QDs, and we also introduce a new model for MEG based on the coherent superposition of multiple excitonic states.  相似文献   

3.
This work investigates the single-photon emissions from self-assembled InGaAs quantum dots that are grown on an apex plane of a GaAs pyramid-like multifaceted structure. The number of QDs on a multifaceted structure is estimated by scanning electron microscopy. Single-exciton emissions from individual quantum dots are examined by micro-photoluminescence and by making photon correlation measurements. This experiment demonstrates the improvement of the single-photon extraction efficiency as quantum dots are grown on a reduced apex plane of a multifaceted structure.  相似文献   

4.
We show that in films of strongly coupled PbSe quantum dots multiple electron-hole pairs can be efficiently produced by absorption of a single photon (carrier multiplication). Moreover, in these films carrier multiplication leads to the generation of free, highly mobile charge carriers rather than excitons. Using the time-resolved microwave conductivity technique, we observed the production of more than three electron-hole pairs upon absorption of a single highly energetic photon (5.7E(g)). Free charge carriers produced via carrier multiplication are readily available for use in optoelectronic devices even without employing any complex donor/acceptor architecture or electric fields.  相似文献   

5.
Carrier multiplication (CM) is a process in which absorption of a single photon produces not just one but multiple electron-hole pairs (excitons). This effect is a potential enabler of next-generation, high-efficiency photovoltaic and photocatalytic systems. On the basis of energy conservation, the minimal photon energy required to activate CM is two energy gaps (2Eg). Here, we analyze CM onsets for nanocrystal quantum dots (NQDs) based upon combined requirements imposed by optical selection rules and energy conservation and conclude that materials with a significant difference between electron and hole effective masses such as III-V semiconductors should exhibit a CM threshold near the apparent 2Eg limit. Further, we discuss the possibility of achieving sub-2Eg CM thresholds through strong exciton-exciton attraction, which is feasible in NQDs. We report experimental studies of exciton dynamics (Auger recombination, intraband relaxation, radiative recombination, multiexciton generation, and biexciton shift) in InAs NQDs and show that they exhibit a CM threshold near 2Eg.  相似文献   

6.
Electrical control over electron spin is a prerequisite for spintronics spin-based quantum information processing. In particular, control over the interaction between the orbital motion and the spin state of electrons would be valuable, because this interaction influences spin relaxation and dephasing. Electric fields have been used to tune the strength of the spin-orbit interaction in two-dimensional electron gases, but not, so far, in quantum dots. Here, we demonstrate that electrical gating can be used to vary the energy of the spin-orbit interaction in the range 50-150 μeV while maintaining the electron occupation of a single self-assembled InAs quantum dot. We determine the spin-orbit interaction energy by observing the splitting of Kondo effect features at high magnetic fields.  相似文献   

7.
Reducing hot-carrier relaxation rates is of great significance in overcoming energy loss that fundamentally limits the efficiency of solar energy utilization. Semiconductor quantum dots are expected to have much slower carrier cooling because the spacing between their discrete electronic levels is much larger than phonon energy. However, the slower carrier cooling is difficult to observe due to the existence of many competing relaxation pathways. Here we show that carrier cooling in colloidal graphene quantum dots can be 2 orders of magnitude slower than in bulk materials, which could enable harvesting of hot charge carriers to improve the efficiency of solar energy conversion.  相似文献   

8.
The general problem of the pairing of strongly interacting elementary excitations producing new quasiparticles such as polarons arises in many areas of solid state physics. Recent interest in polaron formation in semiconductor quantum dots has been motivated by the need to understand the physical nature of the carrier relaxation processes and their role in quantum-dot based devices. We report on the direct observation of polarons in InAs/GaAs self-assembled quantum dots populated by few electrons where the polarons are strongly coupled modes of quantum dot phonons and electron intersublevel transitions. The degree of coupling is varied in a systematic way in a set of samples having electron intersublevel spacing changing from larger to smaller than the longitudinal optical phonon energy. The signature of polarons is evidenced clearly by the observation of a large (12-20 meV) anticrossing for both InAs and GaAs-like quantum dot phonons using resonant Raman spectroscopy.  相似文献   

9.
Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spectroscopy. We find the threshold photon energy for MEG in 9.5 nm diameter Si NCs (effective band gap identical with Eg = 1.20 eV) to be 2.4 +/- 0.1Eg and find an exciton-production quantum yield of 2.6 +/- 0.2 excitons per absorbed photon at 3.4Eg. While MEG has been previously reported in direct-gap semiconductor NCs of PbSe, PbS, PbTe, CdSe, and InAs, this represents the first report of MEG within indirect-gap semiconductor NCs. Furthermore, MEG is found in relatively large Si NCs (diameter equal to about twice the Bohr radius) such that the confinement energy is not large enough to produce a large blue-shift of the band gap (only 80 meV), but the Coulomb interaction is sufficiently enhanced to produce efficient MEG. Our findings are of particular importance because Si dominates the photovoltaic solar cell industry, presents no problems regarding abundance and accessibility within the Earth's crust, and poses no significant environmental problems regarding toxicity.  相似文献   

10.
Carrier multiplication (CM) is the amplification of the excited carrier density by two times or more when the incident photon energy is larger than twice the bandgap of semiconductors. A practical approach to demonstrate the CM involves the direct measurement of photocurrent in the device. Specifically, photocurrent measurement in quantum dots (QDs) is typically limited by high contact resistance and long carrier-transfer length, which yields a low CM conversion efficiency and high CM threshold energy. Here, the local photocurrent is measured to evaluate the CM quantum efficiency from a QD-attached Au tip of a conductive atomic force microscope (CAFM) system. The photocurrent is efficiently measured between the PbS QDs anchored on a Au tip and a graphene layer on a SiO2/Si substrate as a counter electrode, yielding an extremely short channel length that reduces the contact resistance. The quantum efficiency extracted from the local photocurrent data with an incident photon energy exhibits a step-like behavior. More importantly, the CM threshold energy is as low as twice the bandgap, which is the lowest threshold energy of optically observed QDs to date. This enables the CAFM-based photocurrent technique to directly evaluate the CM conversion efficiency in low-dimensional materials.  相似文献   

11.
Power Dissipation in Spintronic Devices Out of Thermodynamic Equilibrium   总被引:1,自引:0,他引:1  
Quantum limits of power dissipation in spintronic computing are estimated. A computing element composed of a single electron in a quantum dot is considered. Dynamics of its spin due to external magnetic field and interaction with adjacent dots are described via the Bloch equations. Spin relaxation due to magnetic noise from various sources is described as coupling to a reservoir. Resulting dissipation of energy is calculated and is shown to be much less than the thermal limit, ∼kT per bit, if the rate of spin relaxation is much slower than the switching rate. Clues on how to engineer an energy efficient spintronic device are provided.  相似文献   

12.
Performing time‐tagged, time‐correlated, single‐photon‐counting studies on individual colloidal nanocrystal quantum dots (NQDs), the evolution of photoluminescence (PL) intensity‐fluctuation behaviors in near‐infrared (NIR) emitting type II, InP/CdS core‐shell NQDs is investigated as a function of shell thickness. It is observed that Auger recombination and hot‐carrier trapping compete in defining the PL intensity‐fluctuation behavior for NQDs with thin shells, whereas the role of hot‐carrier trapping dominates for NQDs with thick shells. These studies further reveal the distinct ramifications of altering either the excitation fluence or repetition rate. Specifically, an increase in laser pump fluence results in the creation of additional hot‐carrier traps. Alternately, higher repetition rates cause a saturation in hot‐carrier traps, thus activating Auger‐related PL fluctuations. Furthermore, it is shown that Auger recombination of negatively charged excitons is suppressed more strongly than that of positively charged excitons because of the asymmetry in the electron‐hole confinement in type II NQDs. Thus, this study provides new understanding of how both NQD structure (shell thickness and carrier‐separation characteristics) and excitation conditions can be used to tune the PL stability, with important implications for room‐temperature single‐photon generation. Specifically, the first non‐blinking NQD capable of single‐photon emission in the near‐infrared spectral regime is described.  相似文献   

13.
Using scattering-type near-field infrared microscopy in combination with a free-electron laser, intersublevel transitions in buried single InAs quantum dots are investigated. The experiments are performed at room temperature on doped self-assembled quantum dots capped with a 70 nm GaAs layer. Clear near-field contrast of single dots is observed when the photon energy of the incident beam matches intersublevel transition energies, namely the p-d and s-d transition of conduction band electrons confined in the dots. The observed room-temperature line width of 5-8 meV of these resonances in the mid-infrared range is significantly below the inhomogeneously broadened spectral lines of quantum dot ensembles. The experiment highlights the strength of near-field microspectroscopy by demonstrating signals from bound-to-bound transitions of single electrons in a probe volume of the order of (100 nm)(3).  相似文献   

14.
A deterministic assembly technique for single sub-20 nm functional nanoparticles is developed based on nanostructured templates fabricated by hot scanning nanoprobes. With this technique, single nanoparticles including quantum dots, polystyrene fluorescent nanobeads, and gold nanoparticles are successfully assembled into 2D arrays with high yields. Experimental and theoretical analyses show that the key for the high yields is the hot-probe-based template fabrication technique, which creates geometrical nanotraps and modifies their surface energy simultaneously. In addition to single nanoparticle patterning, further experiments demonstrate that this technique is also capable of building complex nanostructures, such as nanoparticle clusters with well-defined shapes and heterogeneously integrated nanostructures consisting of quantum dots and silver nanowires. It opens the door to many important applications.  相似文献   

15.
Luminescence of er doped ZnS quantum dots excited by infrared lasers   总被引:1,自引:0,他引:1  
ZnS:Er quantum dots were prepared in aqueous medium from readily available precursors. The construction, morphology and luminescence properties of the ZnS:Er quantum dots were evaluated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescence spectra. The average particle size was calculated using the Scherrer formula to be 4 nm, which is also observed from high resolution transmission electron microscopy (HRTEM) image. Different laser wavelengths at 976 +/- 2 nm and 1480 nm were utilized as the excitation source. ZnS:Er quantum dots had a fluorescence spectrum in 1550 nm region through the 4I13/2 --> 4I15/2 transition. Furthermore, intensity increased with increasing excitation intensity and dopant concentration. The reason for the photoluminescence spectra broadening is discussed. It is because the energy levels of Er3+ are split by a coulombic interaction between electrons, including spin correction and spin-orbit coupling, and eventually by the Stark effect due to ZnS QDs crystal field and local coordination.  相似文献   

16.
Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems.  相似文献   

17.
Franceschetti A  An JM  Zunger A 《Nano letters》2006,6(10):2191-2195
The efficiency of conventional solar cells is limited because the excess energy of absorbed photons converts to heat instead of producing electron-hole pairs. Recently, efficient carrier multiplication has been observed in semiconductor quantum dots. In this process, a single, high-energy photon generates multiple electron-hole pairs. Rather exotic mechanisms have been proposed to explain the efficiency of carrier multiplication in PbSe quantum dots. Using atomistic pseudopotential calculations, we show here that the more conventional impact ionization mechanism, whereby a photogenerated electron-hole pair decays into a biexciton in a process driven by Coulomb interactions between the carriers, can explain both the rate (<1 ps) and the energy threshold ( approximately 2.2 times the band gap) of carrier multiplication, without the need to invoke alternative mechanisms.  相似文献   

18.
We explore two routes to wave function engineering in elongated colloidal CdSe/CdS quantum dots, providing deep insight into the intrinsic physics of these low-dimensional heterostructures. Varying the aspect ratio of the nanoparticle allows control over the electron-hole overlap (radiative rate), and external electric fields manipulate the interaction between the delocalized electron and the localized hole. In agreement with theory, this leads to an exceptional size dependent quantum confined Stark effect with field induced intensity modulations, opening applications as electrically switchable single photon sources.  相似文献   

19.
Synthesis of colloidal nanocrystals of II-VI semiconductor materials has been refined in recent decades and their size dependent optoelectronic properties have been well established. Here we report a facile synthesis of CdSe-CdS core-shell heterostructures using a two-step hot injection process. Red-shifts in absorption and photoluminescence spectra show that the obtained quantum dots have quasi-type-II alignment of energy levels. The obtained nanocrystals have a heterostructure with a large and highly faceted tetrahedral CdS shell grown epitaxially over a spherical CdSe core. The obtained morphology as well as high resolution electron microscopy confirms that the tetrahedral shell have a zinc blende crystal structure. A phenomenological mechanism for the growth and morphology of the nanocrystals is discussed.  相似文献   

20.
We study the g-factor of discrete electron states in InAs nanowire based quantum dots. The g values are determined from the magnetic field splitting of the zero bias anomaly due to the spin 1/2 Kondo effect. Unlike to previous studies based on 2DEG quantum dots, the g-factors of neighboring electron states show a surprisingly large fluctuation: g can scatter between 2 and 18. Furthermore electric gate tunability of the g-factor is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号