首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The synthesis of ultrafine cerium dioxide (CeO2) powders via mechanochemical reaction and subsequent calcination was studied. Anhydrous CeCl3 and NaOH powders, along with NaCl diluent, were mechanically milled. A solid-state displacement reaction—CeCl3+ 3NaOH → Ce(OH)3+ 3NaCl—was induced during milling in a steady-state manner. Calcination of the as-milled powder in air at 500°C resulted in the formation of CeO2 nanoparticles in the NaCl matrix. A simple washing process to remove the NaCl yielded CeO2 particles ∼10 nm in size. The particle size was controlled in the range of ∼10–500 nm by changing the calcination temperature.  相似文献   

2.
BaTiO3 and Ba(Ti,Zr)O3 dielectric powders have been prepared from submicrometer BaCO3, TiO2, and ZrO2. By use of submicrometer BaCO3 the intermediate formation of Ba2TiO4 second phase can be widely suppressed. Monophase perovskites of BaTiO3 were already formed at 900°C and Ba(Ti,Zr)O3 at 1050°C. Aggregates of very small subgrains could be easily disintegrated to particle sizes <0.5 μm.  相似文献   

3.
Nanosized powders of single-phase zinc gallate (ZnGa2O4) spinel were hydrothermally synthesized from solutions in the presence of NaOH over the pH range of 1.9 to 7.0 and from solutions above pH 7.0, i.e., the very basic medium (pH of 13.85), by removing the residual ZnO phase by washing with aqueous H2SO4 from the precipitate mixtures of zinc gallate spinel particles and ZnO. A very wide compositional range (Zn/2Ga = 0.705–1.157) of zinc gallate spinel solid solutions could be hydrothermally synthesized in the form of nanosized particles from acid and very basic mediums (pH of 2.4–13.85) in the presence of NaOH. These hydrothermally synthesized spinel powders showed good sinterability and almost full densification at 1100°C for 1 h. Dense sintered bodies consisting of single-phase zinc gallate spinel were fabricated at 1100°C using zinc gallate spinel powders having almost stoichiometric composition formed from the solution at pH 9.95 in the presence of aqueous ammonia.  相似文献   

4.
5.
A ZrB2–SiC composite was prepared from a mixture of zirconium, silicon, and B4C via reactive hot pressing. The three-point bending strength was 506 ± 43 MPa, and the fracture toughness was 4.0 MPa·m1/2. The microstructure of the composite was observed via scanning electron microscopy; the in-situ -formed ZrB2 and SiC were found in agglomerates with a size that was in the particle-size ranges of the zirconium and silicon starting powders, respectively. A model of the microstructure formation mechanism of the composite was proposed, to explain the features of the phase distributions. It is considered that, in the reactive hot-pressing process, the B and C atoms in B4C will diffuse into the Zr and Si sites and form ZrB2 and SiC in situ , respectively. Because the diffusion of Zr and Si atoms is slow, the microstructure (phase distributions) of the obtained composite shows the features of the zirconium and silicon starting powders.  相似文献   

6.
The effects of Nb2O5 and ZnO addition on the dielectric properties, especially the quality factor, of (Zr0.8Sn0.2)TiO4 (ZST) ceramics were investigated in terms of the sintered density acquired by the zinc. For ZST ceramics with 2 mol% added ZnO, the relative density of the samples decreased with >0.5 mol% addition of Nb2O5. On the other hand, for samples with 6 mol% added ZnO, the relative density remained >97%, even when the amount of Nb2O5 was increased to 2.0 mol%. When >0.5 mol% Nb2O5 was added, both the quality factor and the dielectric constant exhibited similar trends with sintered density. The ZST ceramics with 6 mol% added ZnO, especially, still manifested a quality factor >40 000 and a dielectric constant of 37, even when the amount of Nb2O5 was increased, values that are not explainable by the previously suggested electronic defect model.  相似文献   

7.
Nanocrystalline ZrN powder was synthesized by reduction–nitridation of nanosized ZrO2 powder in ammonia gas with magnesium as the reducing agent. The effects of nitridation temperature, holding time, and Mg:ZrO2 mole ratio on the powder properties were investigated. Cubic phase ZrN powder with a 30–100-nm particle size was synthesized at 1000°C for 6 h, under a Mg:ZrO2 mole ratio of 10:1.  相似文献   

8.
Zinc oxide (ZnO) powders were synthesized by the modified glycine-nitrate process (MGNP) with various oxidants and fuels. Single-phase ZnO powders were easily obtained regardless of oxidants and fuels. The particle size and shape of ZnO powders were dependent on the types of fuels. The ZnO powder synthesized using Zn(OH)2 and glycine as an oxidant and a fuel, at a fuel/oxidant ratio of 0.8, showed the best powder characteristics, such as an average grain size of 30 nm and the specific surface area of 120 m2/g. The removal of silver ions from the waste-development solution was tried to confirm photocatalytic activities of the synthesized ZnO powder. The silver ions were completely removed within 15 min. This silver recovery rate is three times higher than that of commercial state-of-the-art TiO2. The photoluminescence (PL) measurement also showed the PL intensity at ultraviolet (UV) of the synthesized ZnO powder is almost three times higher than that of commercial state-of-the-art TiO2. The synthesized ZnO nanopowder absorbed more UV than any other powders, including commercial state-of-the-art TiO2 and ZnO powders. This means the high UV absorption efficiency leads to the generation of more electrons that are involved in the reduction of silver ions.  相似文献   

9.
Fine ZrO2 powders were synthesized by an aqueous precipitation method using zirconyl nitrate. By adding the precursor salt to NaOH, single-phase ZrO2 powders were formed, and the monoclinic phase did not appear upon heat treatment up to 1000°C. The samples were digested in NaOH for different amounts of time. Different levels of washing of digested samples produced surface area at 900°C for 4 h ranging from 8 to 100 m2/g. It was found that the properties of the powders at elevated temperatures were sensitive to the sodium content. The surface area decreased while the crystallite size and pore size of the samples increased with increased sodium content. Our results indicated that sodium is detrimental to the stabilization of surface area at elevated temperatures.  相似文献   

10.
A chloride-based inorganic sol–gel route was used for preparing pure and metal (osmium, nickel, palladium, platinum)-doped SnO2 sol. SnCl4 was first reacted with propanol, then the resulting compound was hydrolyzed and subsequently mixed with solutions of the metal dopants. The obtained sols were used for depositing thin films by spin coating or for preparing powders by solvent evaporation at 110°C. FTIR spectroscopy and thermal analysis of the powders revealed that chlorine still bound to tin stabilized the sol against gelation by hindering the condensation reactions. Film characterizations showed that platinum and palladium, unlike nickel and osmium, were likely to form nanoparticles in the SnO2 lattice. This result was discussed with regard to the different ways that platinum and palladium, on one hand, and nickel and osmium, on the other, modified the growth of SnO2 grains and the film roughness and morphology. Dopants that formed nanoparticles (platinum, palladium) resulted in the roughest film, while dopants that did not form particles (nickel, osmium) resulted in SnO2 grain size very close to that of pure SnO2.  相似文献   

11.
Ba x Sr1- x TiO3 (BST) powders were processed at temperatures <100°C by reacting nanosized TiO2 powders in alkaline, aqueous solutions of BaCl2, SrCl2, and NaOH. The effects of processing variables (NaOH concentration, time, temperature, and the ratios of barium, strontium, and titanium initially in solution) on the resultant BST powder stoichiometry and solid solubility were examined. In all cases, strontium was more readily incorporated into the BST powders than barium, and the extent varied systematically with the processing variables. BST powders that were processed in solutions with a large initial excess of barium and strontium, relative to titanium, consisted of a single-phase solid solution. In contrast, BST powders that were processed in solutions with a small initial excess of barium and strontium, relative to titanium, contained a biphasic solid solution which corresponded to separate barium-rich and strontium-rich phases.  相似文献   

12.
The polymer precursor method is very useful to prepare Nb5+-stabilized nanocrystalline powders of t -ZrO2. The precursor solution is composed of zirconium oxalate, niobium tartrate, and poly(vinyl alcohol), which help to form a network matrix to disperse the metal ions homogeneously. Nb5+ is an effective agent to stabilize t -ZrO2, and ease of formation of the tetragonal phase increases with increasing dopant concentration. Thermal stability of t -phase is found up to 1700°C having 15 mol% Nb5+, prepared at 600°C with particle sizes of 35 ± 5 nm.  相似文献   

13.
Flexible large sheets of dimethylsiloxane-based inorganic/organic hybrids with sizes of ∼200 mm × 290 mm and ∼1.5 mm thickness have been fabricated from poly(dimethylsiloxane) (PDMS) and metal alkoxides of Zr and Ta. The hybrid sheets were characterized by XPS, EXAFS, FT-IR, HRTEM, and SAXS. The inorganic components derived from metal alkoxides in the dimethylsiloxane-based hybrid sheets were found to be present as oxide-like clusters with sizes of 2–3 nm or below, which were chemically attached to PDMS via M–O–Si bonds. The hybrid sheets showed high elongation, strength, and thermal stability. A high elongation of about 100% was observed in the hybrid sheets fabricated in Zr(OBun)4/PDMS = 2 at 180°C and a high tensile strength of about 3.0 MPa was observed in those fabricated in Zr(OBun)4/PDMS = 4 at 180°C. The flexibility of the hybrid sheets was kept at least to 200°C for 100 h in N2. These features are thought to come from the inorganic components derived from metal alkoxides, which are close to the molecular-level size and behave as a strong cross-linking agent of PDMS chains.  相似文献   

14.
Our analysis of the microwave dielectric properties of the δ-Bi2O3–Nb2O5 solid solution (δ-BNss) showed a continuous increase in permittivity and dielectric losses with an increasing concentration of Nb2O5. The only discontinuity was found for the temperature coefficient of resonant frequency, which is negative throughout the entire homogeneity range but reaches a minimum value for the sample with 20 mol% Nb2O5. At the same composition there is a discontinuity in the grain size of the δ-BNss ceramics. For the sample containing 25 mol% Nb2O5 two structural modifications were observed. A single-phase tetragonal Bi3NbO7, in the literature referred to as a Type-III phase, is formed in a very narrow temperature range from 850° to 880°C. A synthesis performed below or above this temperature range resulted in the formation of the end member of the δ-BNss homogeneity range. Compared with the δ-BNss the Bi3NbO7 ceramics exhibit lower microwave dielectric losses, an increased conductivity, and a positive temperature coefficient of resonant frequency.  相似文献   

15.
To produce a new red pigment for Japanese porcelains, some hematite (α-Fe2O3) powders produced by different methods were investigated by mixing them with lead-free frit powders and firing them on white porcelain plates at 800°C. Commercial hematite powders and uniform α-Fe2O3 powders 155 and 53 nm in diameter which were prepared using conventional- and microwave-hydrothermal reactions, respectively, were used as sources of red pigments. The morphology and dispersion of the above α-Fe2O3 powders were found to have a significant effect on the tone of red color for porcelain pigment.  相似文献   

16.
Perovskite lead hafnate (PbHfO3, PH) nanoparticles that were free from halides and organics were synthesized via the oxidant peroxo method. Stoichiometric amounts of hafnium nitrate (HfO(NO3)2) and lead nitrate (PbHfO3) were dissolved in a diluted hydrogen peroxide (H2O2) aqueous solution, which was slowly added to a solution of H2O2 and ammonia (NH3) (pH 11). The lead–hafnium precipitate obtained was filtered and washed, to eliminate all nitrate ions. The precipitate was dried, ground, and calcined at temperatures of 400°–900°C. A tetragonal intermediate phase was identified using X-ray diffractometry and Raman spectroscopy during the calcination process, followed by the crystallization of the orthorhombic PH phase at ∼700°C.  相似文献   

17.
The effect of ZrO2 on crystallographic order, microstructure, and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 (BZT) ceramics was investigated. A small amount of ZrO2 disturbed the 1:2 cation ordering. The average grain size of the BZT significantly increased with the addition of ZrO2, which was attributed to liquid-phase formation. The relative density increased with the addition of a small amount of ZrO2, but it decreased when the ZrO2 content was increased. Variation of the dielectric constant with ZrO2 addition ranged between 27 and 30, and the temperature coefficient of resonant frequency increased abruptly as the ZrO2 amount exceeded 2.0 mol%. The Q value of the BZT significantly improved with the addition of ZrO2, which could be explained by the increased relative density and grain size. The maximum Q × f value achieved in this investigation was ∼164 000 GHz for the BZT with 2.0 mol% ZrO2 sintered at 1550°C for 10 h.  相似文献   

18.
An investigation of the sintering behavior of ZrB2 powder with Fe and Cr (0 to 20 wt%) addition was conducted. It was observed that Fe addition helps to enhance the density of ZrB2 only up to 10 wt%. Further addition of Fe degrades the sintering by segregation of Fe-rich phases. Formation of a eutectic phase containing a Fe:Zr ratio of 92.57:7.43 was also found in Fe-added samples. The addition of Cr to a ZrB2 matrix was found to result in swelling of the samples, leading to several cracks.  相似文献   

19.
(In0.67Fe0.33)2O3 with the bixbyite structure was synthesized via 28 GHz microwave irradiation, using multimode microwave heating equipment. Indium sesquioxide strongly absorbs 28 GHz microwaves, and this strong coupling with microwave energy can be used to drive a reaction with iron sesquioxide. A mixture of In2O3 and α-Fe2O3 powders (In:Fe ratio of 2:1) was irradiated with microwaves at a frequency of 28 GHz. The mixture was heated to 1400°C during the microwave irradiation. The formation of a solid solution was completed within a minute, which indicated a drastic enhancement of the reaction rate. Scanning electron microscopy revealed remarkable grain growth under microwave irradiation.  相似文献   

20.
This paper reports a new system for the preparation of lead titanate powders by the sol-gel method. In this system basic lead acetate, (CH3COO)2Pb.Pb(OH)2, is used as the lead precursor instead of the widely used Pb(OOCCH3)2.3H2O and titanium tetrabutoxide monomer. This new system simplifies the chemical processing of precursor solutions of lead titanate, increases their stability in air, and offers good control of Pb:Ti stoichiometry. The xerogel, obtained from the precursor solution by aging at room temperature, is found to have a higher inorganic content. Gel-to-ceramic conversion is achieved by calcining the xerogel at 600°C. The phase purity, particle size, morphology, and compositional homogeneity of the gel-derived powders are examined by XRD, TEM, and ICP-OES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号