首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
This paper presents fast reactor core concept and its feasibility as a part of newly proposed compound process fuel cycle in which spent fuels of light water reactor are multi-recycled without conventional reprocessing but with only pyrochemical processing, fuel re-fabrication and reloading to the fast reactor core. Results of the core survey analyses in order to find out the feasibility of this concept, taking example for BWR MOX spent fuel of 60 GWd/t burn-up, show that four times recycling of LWR spent fuel with the burn-up of more than 300 GWd/t can be achieved without increasing MA content. Such benefits will be expected in this concept as reduction of fuel cycle cost due to simplified reprocessing procedure, reduction of environmental impacts due to reduced high level waste, efficient utilization of nuclear fuel resources, enhancement of nuclear non-proliferation, and suppression of LWR spent fuel pile-up.  相似文献   

2.
The Feasibility Study on Commercialized Fast Reactor (FR) Cycle Systems is under progress in order to propose prominent FR cycle systems that will respond to the diverse needs of society in the future. The design studies on various FR system concepts have been achieved and then the evaluations of potential to achieve the development targets have been also carried out. Crucial development issues have been found out for each FR system concept and their development plans for the key technologies are summarized as the roadmap. As a result, it has been confirmed that the sodium-cooled FR concept is highly suited to the development targets and R&D issues are related enhancing the economy with certain perspectives for realization. A flexible and robust development program for the FR cycle system will be proposed taking account of the characteristics for each FR concept until the end of the Phase II study.  相似文献   

3.
The possibility of creating a self-sustained regime of a running nuclear burning wave in the critical fast reactor with the mixed Th-U fuel is demonstrated. The calculations were performed in the deterministic approach based on solving the non-stationary multi-group diffusion equation of neutron transport together with the set of equations of the fuel component burn-up and the nuclear kinetics of precursor nuclei of delayed neutrons. The presence of the constructional material Fe and the coolant (the Pb-Bi eutectic) in the reactor composition is taken into account. The calculation results of the space-time evolution of neutron flux and fuel component concentrations are presented for different values of the Th-U ratio in the fuel. The calculations show the remarkable stability of the nuclear burning wave regime against neutron flux distortions in the reactor, which is a result of the negative feedback on reactivity inherent to this regime. This is one of the most important features of the reactor of this type, which ensures its intrinsic safety.  相似文献   

4.
Korean fast reactor scenarios have been analyzed for various kinds of conversion ratios by the DANESS system dynamic analysis code. The once-through fuel cycle analysis was modeled based on the Korean “National Energy Basic Plan” up to 2030 and a postulated nuclear demand growth rate until 2150. The fast reactor scenario analysis has been performed for three kinds of conversion ratios such as 0.3, 0.61, and 1.0. Through the calculations, the nuclear reactor deployment scenario, front-end cycle, back-end cycle, and long-term heat load have been investigated.  相似文献   

5.
The future expansion of nuclear energy, a technology identified as one of the main candidates for reducing the world’s dependence on fossil fuels, requires a thorough analysis of the sustainability of this energy source for long-term supply. Generation-IV nuclear systems could represent a turning point for energy production by minimizing the environmental footprint of the fuel cycle. A new paradigm is thus required for reactor design, focusing, at the core design level, on both the closure of the fuel cycle and the effective utilization of natural resources.  相似文献   

6.
The inspiration for dealing with the topic of fuel cycle back-end was attendance at a European project called RED-IMPACT – Impact of Partitioning Transmutation and Waste Reduction Technologies. This paper includes an image how to re-use energetic potential of stored spent fuel and at the same time how to effectively reduce spent fuel and radioactive waste volumes aimed for deep repositories. The first part is based on the analysis of Pu and minor actinides (MA) content in actual VVER-440 spent fuel stored in Slovakia. The next parts present the hypothetical possibilities of reprocessing and Pu re-use in a fast reactor under Slovak conditions. For the hypothetical transmutation of heavy nuclides (Pu and MA) contained in Slovak spent fuel a SUPERPHENIX (SPX) fast reactor with increased power was chosen because a fast nuclear reactor cooled by sodium belongs to the group of Generation IV reactor systems. This article deals with the analysis of power production and fuel cycle indicators. The indicators of the SPX calculation model were compared with the results of the VVER-440 spent fuel with the initial fuel enrichment of 4.25% U-235 + 3.35% Gd2O3. The created SPX model in the spectral computer code HELIOS 1.10 consists of a fissile (fuel) and a fertile part (blanket). All kinds of calculations were performed by the computer code HELIOS 1.10. This study also exposes the HELIOS modelling and simulating borders.  相似文献   

7.
New concept of a passive-safety simple fast reactor “METAL-KAMADO” with metallic fuels is presented, which has same concept as a passive-safety thermal reactor “KAMADO”. A fuel element of the “METAL-KAMADO” consists of metallic fuel (U–10%Zr) and cooling holes of He gas flow. These fuel elements are located in a reactor water pool of atmospheric pressure (0.1 MPa) and low temperature (<60 °C). In case of LOF, decay heats of fuel elements are removed by natural heat transfer from surfaces of the fuel elements to the reactor water pool.

Preliminary neutronic calculations of the “METAL-KAMADO” show possibility of high burn-up of more than 120 GWd/t with 10% enriched U–Zr fuel. Reactivity coefficients of the core are also discussed.  相似文献   


8.
Core characteristics of a sodium-cooled fast breeder reactor (FBR) with 750 MWe output using highly decontaminated uranium and plutonium and highly minor-actinide-containing compositions were evaluated using the fast reactor cross-section set generated by the new Japanese nuclear data library JENDL-4.0. The core characteristics were compared with those obtained using the unified cross-section set ADJ2000R in order to investigate the differences between both the results. The effects on the core characteristics caused by the differences in the nuclear data of important reactions and nuclides in the cross-section sets were analyzed by a burnup sensitivity analysis. It was confirmed that adopting JENDL-4.0 to the FBR core design improves the breeding ratio, the burnup reactivity, and the reactivity control balance, because of the differences in the capture cross-sections of U-238 and Pu-239 of both the libraries. The difference in the sodium void reactivity evaluated with both the libraries was less than 1% because the increase caused by the differences in the elastic scattering cross-sections of sodium, the inelastic scattering cross-section, and the μ-average value of U-238 was practically cancelled out by the decrease caused by the differences in the capture cross-sections of Pu-239, the inelastic scattering cross-section of iron, and the capture cross-sections of Am-241.  相似文献   

9.
Molten-salt reactors (MSRs) are selected as one of the candidates of Generation IV reactor concepts. In GLOBAL2005 held in Tsukuba, Japan, one paper discussed the flattening of fast neutron flux in the core for a longer life of graphite moderator. In the paper a 3-region reactor concept was presented. The authors tried many cores changing configurations such as volume of each region and fractions of fuel salt in the regions or fuel compositions.

We investigated the other possibility of a 2-region core for the simplicity. Using one energy group neutron diffusion theory and considering extrapolation distance, the optimum selection of region wise neutron multiplication factors can be theoretically and easily obtained. In MSRs, there is no burnup distribution of the fuel. The region wise neutron multiplications can be obtained by adjusting the volume fraction of fuel in a cell with a given composition of the fuel salt. Using the theoretical results, the optimization of the actual core configuration was determined by a nuclear analysis code SRAC2002 with the nuclear data library of JENDL3.3.

In this paper, we considered MSRs using plutonium as a fissile material. Ordinary MSRs use uranium-233, which doesn't exist naturally, and utilizing plutonium is easier to startup.  相似文献   


10.
11.
12.
The paper presents variations of a certain passive safety containment for a near future BWR. It is tentatively named Mark S containment in the paper. It uses the operating dome as the upper secondary containment vessel (USCV) to where the pressure of the primary containment vessel (PCV) can be released through the upper vent pipes. One of the merits of the Mark S containment is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. Another merit is the capability to submerge the PCV and the reactor pressure vessel (RPV) above the core level by flooding water from the gravity-driven cooling system (GDCS) pool and the upper pool. The third merit is robustness against external events such as a large commercial airplane crash owing to the reinforced concrete USCV. The Mark S containment is applicable to a large reactor that generates 1830 MW electric power. The paper presents several examples of BWRs that use the Mark S containment. In those examples active safety systems and passive safety systems function independently and constitute in-depth hybrid safety (IDHS). The concept of the IDHS is also presented in the paper.  相似文献   

13.
This work developed an advanced boiling water reactor (ABWR) feedwater pump and controller model, which was incorporated into Personal Computer Transient Analyzer (PCTran)-ABWR, a nuclear power plant simulation code. The feedwater pump model includes three turbine-driven feedwater pumps and one motor-driven feedwater pump. The feedwater controller includes a one-element/three-element water level controller and a specific feedwater speed controller for each feedwater pump. The performance tests, including step change of dome pressure, feedwater pumps transfer, inadvertent closure of all turbine control valves, and one feedwater pump trip at 100% power, demonstrate the feasibility of dynamic response of stand-alone model and incorporated model. Furthermore, a diversity and defense-in-depth analysis is performed to demonstrate the feasibility for motor-driven feedwater pump as an emergency core cooling system (ECCS) automatic diverse back-up. In Lungmen nuclear power plant (NPP), a diverse manual initiation means for the high pressure core flooder (HPCF) loop C is designed as the back-up of digitalized engineered safety features actuation system (ESFAS). If the motor-driven feedwater pump (MDFWP) can be an automatic digital diverse back-up for ESFAS, Lungmen NPP would be more robust to defend against software common-cause failure (CCF).  相似文献   

14.
The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.  相似文献   

15.
This paper describes the anticipated long-term evolutions of nuclear fuel cycles. The main driver for such an evolution is the need for improving the sustainability of global energy systems. Indeed, sustainability is becoming the international reference approach to reconciling the different fields of analysis, i.e. the technical performance, economic viability, environmental preservation and societal acceptance. While our societies have to face the issue of finding new energy models which help to mitigate climate change, global approaches are mandatory to select the relevant improvements for the different energy systems, including nuclear energy. In a first step, this paper focuses on the specific environmental footprint of nuclear energy and its position with regards the other energy sources. From this situation, this paper depicts the potential improvement to be studied in order to improve the overall environmental footprint.  相似文献   

16.
This paper presents about conceptual designs of Advanced Recycling Reactor (ARR) focusing on enhancement in transuranics (TRU) burning and americium (Am) transmutation. The design has been conducted in the context of the Global Nuclear Energy Partnership (GNEP) seeking to close nuclear fuel cycle in ways that reduce proliferation risks, reduce the nuclear waste in the US and further improve global energy security. This study strives to enhance the TRU burning and the Am transmutation, assuming the development of related technologies in this study, while the ARR based on mature technologies was designed in the previous study. It has followed that the provided TRU burning core is designed to burn TRU at 28 kg/TWthh, by adding moderator pins of B4C (Enriched B-11) and the Am transmutation core will be able to transmute Am at 34 kg/TWthh, by locating Am blanket of AmN around the TRU burning core. It indicates that these concepts improve TRU burning by 40-50% than the previous core and can transmute Am effectively, keeping the void reactivity acceptable.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号