首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamic strain ageing (DSA) behaviours of type 316L stainless steels containing different nitrogen contents (0.01–0.15 wt% N) were studied in tension under varying strain rates (1 × 10–2–2 × 10–4s–1) and the test temperatures (R.T.–1023 K). The temperature range for DSA was moved to higher temperature for increasing nitrogen contents. The critical strain, c for the onset of serration increased with nitrogen content at 773 K and then became almost constant at 873 K. Type A and B serrations were observed at 873 K with the value of the strain required to effect the transition from type A to type B serration increasing for nitrogen contents upto 0.1 wt% and then becoming saturated. The activation energy for DSA was 23.4–26.2 kcal mol–1 (97.8–109.5 kJ mol–1) at the onset and 65.0–76.6 kcal mol–1 (271–320.2 kJ mol–1) at the end of serration. The lower activation energy was related to vacancy diffusion and the higher activation energy was attributed to the diffusion of chromium to dislocations. The activation energy for DSA was slightly increased with nitrogen addition. DSA was retarded by an increase in the nitrogen content since nitrogen reduced the chromium diffusion to dislocations due to a strong interaction between the nitrogen and chromium.  相似文献   

2.
The influence of two strain rates, 1.10–1 and 2.10–2 sec–1, on the temperature rise of specimens of -titanium alloys in static tests in the 290- 4.2 K range is investigated. It is established that at room temperature conditions (290 K) the temperature rise of the specimens is nonuniform over the length and is 14 K, in liquid nitrogen (77 K) it is more than 0.5 K, and in liquid helium (4.2 K) the temperature depends upon the strain rate and reaches 46 K. It is shown that the temperature rise of the specimens in liquid helium in strain at a rate of 2.10–2 sec–1 reduces the tensile strength but does not influence the yield strength of the material.Translated from Problemy Prochnosti, No. 12, pp. 70–78, December, 1992.  相似文献   

3.
The thermal and electrical conductivities of uranium have been measured over the temperature range 5–100 K. Both in the as-received condition and after annealing, the thermal conductivity results show a maximum at low temperatures followed by a shallow minimum with increasing temperature. Typical values for the annealed specimen were 65 W m–1 K–1 at 15 K and 35 W m–1 K–1 at 100 K. The temperature dependence can be explained by an electronic conductivity increasing with temperature, and a significant lattice contribution which is almost constant over the temperature range 40–100 K. A small secondary peak centered at 55 K is observed associated with the -0 phase transition.  相似文献   

4.
The deformation characteristics of Zr-3Sn-1Mo-1Nb alloy have been investigated by tensile testing in the temperature range 300–1000 K at a constant crosshead speed corresponding to the strain rate of 6.7×10–5s–1. At lower temperatures, below about 500 K, the flow stress of the sample decreased with increasing temperature, whereas an inverse temperature dependence of the yield stress was found at temperatures between 500 and 700 K. At higher temperatures, above 700 K, the normal dependence of the yield stress on temperature was again observed. The maximum stress exhibited a similar temperature dependence. At higher temperature, serrations were found on the flow stress curves at the very beginning of deformation. The main deformation mechanisms are assumed to be a locking-unlocking mechanism connected with cross-slipping.  相似文献   

5.
The results of mechanical tests of chromium-nickel-molybdenum steel in uniaxial tension in the strain-rate range of 10–3–5104 sec–1 and at temperatures ranging from 77 to 523 K are presented. The increase in strength and plasticity characteristics with increasing strain rate is confirmed. The results of the investigations conducted contradict the hypothesis of equivalence of the effect of a temperature reduction and increase in strain rate on the mechanical characteristics of metals.Translated from Problemy Prochnosti, No. 9, pp. 17–19, September, 1991.  相似文献   

6.
Bulk crystals of Ge1–xSi x alloys were grown by the Czochralski technique. Full single crystals were obtained for the alloys of composition 0 < x < 0.15 and 0.9 < x < 1, while single crystal parts near the seeds of ingots provided alloys of intermediate composition. The dislocation velocity and mechanical strength of the GeSi alloys were investigated by the etch pit technique and compressive deformation tests, respectively. In the GeSi alloys of the composition range 0.004 < x < 0.080 the dislocation velocity decreases monotonically with increasing Si content in the temperature range 450–700°C and the stress range 3–24 MPa. In contrast, in the composition range 0.94 < x < 1 the dislocation velocity first increases and then decreases with decreasing Si content in the temperature range 750–850°C and the stress range 3–30 MPa. The velocity of dislocations was determined as functions of stress and temperature. The stress–strain behaviour in the yield region of the GeSi alloys of composition 0 < x < 0.4 is similar to that of Ge at temperatures lower than about 600°C. However, the yield stress becomes temperature-insensitive at high temperatures and increases with increasing Si content. The stress–strain curves of the GeSi alloys of composition 0.94 < x < 1 are similar to those of pure Si at temperatures of 800–1000°C and the yield stress increases with decreasing Si content down to x = 0.94. The yield stress of the GeSi alloys is dependent on the composition, being proportional to x(1 – x). The strengthening mechanism in alloy semiconductors is discussed.  相似文献   

7.
The low-temperature internal friction Q –1 and thermal conductivity of plastically deformed, high-purity niobium monocrystals have been investigated and compared with measurements on an amorphous SiO2 (a-SiO2) specimen. After plastic deformation at intermediate temperatures, an approximately temperature independent internal friction Q –1 was observed with a magnitude comparable to that of the a-SiO2 specimen. Plastic deformation at low temperatures leads to an internal friction Q –1 with a considerably smaller magnitude. In the temperature range between about 0.3 and 1.5K, the lattice thermal conductivity k of the deformed specimens decreases with increasing deformation. It is, however, nearly independent of the amount of deformation at the lowest temperatures investigated. In this temperature regime, the lattice thermal conductivity of the specimens varies proportional to T 3 and has a magnitude as would be expected for an undeformed sample. Additional heat release experiments on an undeformed sample clearly show no long-time energy relaxation effects. We conclude that the defects introduced by plastic deformation cannot be described with the tunneling model which had been proposed to describe the low temperature elastic and thermal properties of amorphous solids. The phonon scattering mechanisms observed in deformed niobium are tentatively related to the dynamic interaction of phonons with geometrical kinks in dislocations.  相似文献   

8.
The hot deformation behavior of spheroidal graphite cast iron (SGCI) was investigated quantitatively from 600 °C to 950 °C at high strain rate of 10 s−1 by compression tests on a Gleeble-1500 simulator. The results show that the peak strain increases gradually with increasing deformation temperatures in the range of 600–800 °C and decreases when the temperature is raised to 800 °C and above. The optimum deformation temperature range is determined at 700–900 °C. The graphite particles become spindles or flakes after deformation, even some graphite collapse in the compressed specimens with about 0.7 peak strains. The graphite area fraction decreases as the temperature increases, at the same time, the high peak strain promotes the dissolving of carbon.  相似文献   

9.
From thermal diffusivity measurements of sintered AIN at temperatures ranging from 100 to 1000 K, the phonon mean free path of AIN was calculated in order to investigate phonon scattering mechanisms. The calculated mean phonon scattering distance was increased with decreasing temperature. The mean phonon-defect scattering distances were respectively limited to about 50 nm at temperatures ranging from 100 to 270 K and about 30 nm at temperatures ranging from 100 to 700 K, for AIN specimens with a room-temperature thermal conductivity of 220 and 121 Wm–1 K–1 containing 0.1 and 1.4 wt % oxygen, respectively. These short phonon-defect scattering distances were considered to correspond to the separation of oxygen-related internal defects in AIN grains. Calculation of the mean phonon scattering frequencies indicated that the phonon scattering is dominated by phonon-defect scattering at temperatures below 270 K for an AIN specimen with an oxygen content of 0.1 wt %, and at temperatures below 350 K for an AIN specimen with an oxygen content of 1.4 wt %.  相似文献   

10.
The deformation behavior in isothermal compression of Ti–6Al–4V alloy is investigated in the deformation temperatures ranging from 1093 K to 1303 K, the strain rates ranging from 0.001 s−1 to 10.0 s−1 at an interval of an order magnitude and the height reductions ranging from 20% to 60% at an interval of 10%. Based on the experimental results in isothermal compression of Ti–6Al–4V alloy, the effect of processing parameters and grain size of primary α phase on the strain rate sensitivity exponent m and the strain hardening exponent n is in depth analyzed. The strain rate sensitivity exponent m at a strain of 0.7 and strain rate of 0.001 s−1 firstly tends to increase with the increasing of deformation temperature, and maximum m value is obtained at deformation temperature close to the beta-transus temperature, while at higher deformation temperature it drops to the smaller values. Moreover, the strain rate sensitivity exponent m decreases with the increasing of strain rate at the deformation temperatures below 1253 K, but the m values become maximal at a strain rate of 0.01 s−1 and the deformation temperature above 1253 K. The strain rate affects the variation of strain rate sensitivity exponent with strain. Those phenomena can be explained reasonably based on the microstructural evolution. On the other hand, the strain hardening exponent n depends strongly on the strain rate at the strains of 0.5 and 0.7. The strain affects significantly the strain hardening exponent n due to the variation of grain size of primary α phase with strain, and the competition between thermal softening and work hardening.  相似文献   

11.
Review Mechanical properties of ice and snow   总被引:2,自引:0,他引:2  
The mechanical properties of ice and snow are reviewed. The tensile strength of ice varies from 0.7–3.1 MPa and the compressive strength varies from 5–25 MPa over the temperature range –10°C to –20°C. The ice compressive strength increases with decreasing temperature and increasing strain rate, but ice tensile strength is relatively insensitive to these variables. The tensile strength of ice decreases with increasing ice grain size. The strength of ice decreases with increasing volume, and the estimated Weibull modulus is 5. The fracture toughness of ice is in the range of 50–150 kPa m1/2 and the fracture-initiating flaw size is similar to the grain size. Ice-soil composite mixtures are both stronger and tougher than ice alone. Snow is a open cellular form of ice. Both the strength and fracture toughness of snow are substantially lower than those of ice. Fracture-initiating flaw sizes in snow appear to correlate to the snow cell size.  相似文献   

12.
The tensile behavior of a newly developed Ti–6Al–2Sn–2Zr–3Mo–1Cr–2Nb–Si alloy, referred as TC21, is investigated at temperatures ranging from 298 to 1023 K and under constant strain rate loadings ranging from 0.001 to 1270 s−1. The results show that temperature and strain rate have significant effects on the tensile behavior of the material. At low strain rates of 0.001 and 0.05 s−1, a discontinuity is found in the yield stress–temperature curve. And the discontinuity temperature increases with increasing strain rate. The analysis of temperature and strain rate dependence of unstable strain indicates a high-velocity-ductility phenomenon at elevated temperatures. Scanning electron microscope (SEM) analysis shows that the material is broken in a mixture manner of ductile fracture and intergranular fracture under low strain rates at room temperature, while the fracture manner changes to totally ductile fracture under other testing conditions. The width and depth of ductile dimples increase with increasing temperature. No adiabatic shear band is found in the tensile deformation of the material.  相似文献   

13.
Coal tar-derived mesophase pitch and its blends with PVC pitch in 5 or 10 wt% were spun at temperatures from 340 to 390° C by applying pressurized nitrogen. The parent mesophase pitch and the blended pitch showed an excellent spinnability at temperatures from 360 to 380° C and from 350 to 380° C, respectively, to give a thin pitch fibre of 10m diameter. The transverse texture of the fibres from the parent mesophase pitch showed the radial orientation regardless of a higher spinning temperature of 390° C. In contrast, those from the blended pitches showed random orientation even at the lower spinning temperature of 350° C. The amounts of the blend extruded by spinning at each temperature under 0.2 kg cm–2 G–1 were always larger than those of the mesophase pitch. It is clarified in the present study that blending PVC pitch can realize stable spinning at lower temperatures, where the molecular orientation in the transverse section of the resultant carbon fibre was controlled through decreasing the viscosity of the whole mesophase pitch.  相似文献   

14.
The heat capacity of quench-condensed normal- and para-hydrogen has been measured using ac calorimetry. The measurements were made at temperatures from 1.6 to 3.7 K on sapphire and evaporated gold substrates. The range of exposures studied was 0.24 to 3.3 Å–2, yielding estimated coverages from 0.07 to 2.5 Å–2. For reference, monolayer completion of H2 on graphite occurs at a coverage of 0.1 Å–2. For normal-hydrogen (n-H2) on a few of our sapphire substrates, the heat capacity as a function of temperature exhibits a peak at 1.8 K, followed by a rapid decrease. For then-H2 data on all other substrates, a negative slope is observed at the lowest temperatures measured, which is consistent with a peak below our temperature range. We attribute these effects to a bulk-like orientational ordering transition. The coverage dependence of the peak is not consistent with the predictions of a model of finite-size effects. We conclude that the dominant broadening of the peak is inhomogeneous. The desorption rate is deduced from the time dependence of the heat capacity and is found to agree with previously published values. The ortho-to-para conversion rate is comparable to that of bulk hydrogen.  相似文献   

15.
The mechanical properties of individually pure and intermetallic phases of typical Al–Ni–Si piston alloys are investigated at different temperatures using hot stage nanoindentation. The hardness and the indentation modulus of a number of phases are determined at room temperature, 500 K and 650 K. Both, hardness and reduced modulus drop with increasing temperature in different ratios for the various phases. Increasing Ni content in the grains improves the mechanical stability of the material at elevated temperatures in general. The indentation patterns are studied using atomic force microscopy with particular reference to the indentation depths and pile-up effects. Site-specific samples from the material surrounding the nanoindents are prepared using a focussed ion beam field emission gun for examination in the transmission electron microscope. This allows direct observation of material changes as a result of the indentation process in the different phases within the alloy system.Corresponding linked atomistic finite element calculations have been carried out for Si and Ni–Al systems as a function of increasing Ni content at various temperatures. The results show only a small difference in the mechanical behaviour of Si between 300 K and 650 K as observed in the experiments. Large differences for Al at both temperatures studied result in an increase of plasticity with rising temperature and atomic motion that changes from slip in well-defined planes to a viscous fluid-like behaviour. The formation of dislocations and slip bands during indentation for the Ni–Al systems is studied.  相似文献   

16.
Bicrystals of CU-SiO2 dispersion-hardened alloys and of pure copper were tensile tested at various temperatures between 450 and 1050 K at a strain rate of 1.5 x 10–4 sec–1. In the case of pure copper bicrystals, elongation to fracture did not depend significantly on temperature and the fracture mode was invariably transgranular up to 850 K. On the other hand, the ductility of CU-SiO2 bicrystals decreased with increase in temperature and the transition in the fracture mode from transgranular to intergranular occurred at around 450 K. SiO2 particles on grain boundaries play an important role on intergranular fracture by suppressing grain-boundary sliding and also on the retardation of recrystallization during deformation. Two types of Cu-SiO2 bicrystals having different crystal orientation relationships show quite different deformation and fracture behaviour. This can be explained in terms of the contribution of lattice dislocations to the grain-boundary sliding.  相似文献   

17.
The tensile properties and fracture behavior of a coarse-grained (grain size 420 μm) Fe–45at.%Al intermetallic doped with 0.05 at.% boron were examined at ambient temperature in air, argon and vacuum as well as in the 77–1000 K temperature range in liquid nitrogen, dry ice and air. Before testing the alloy was low temperature annealed (vacancy annealed) in order to remove all the retained vacancies. At ambient temperature ductility increases accordingly to decreasing water vapor (moisture) content in each environment. The mixed transgranular cleavage (TGC)+intergranular failure (IGF) mode in vacuum, which is associated with the highest elongation (6%), exhibits around 40% of IGF and the mixed fracture mode in argon, which is associated with the second highest elongation (3.2%), exhibits 15% of IGF. The TGC fracture mode in air is associated with the lowest elongation (1%). Elongation in the cryogenic temperature range from 77 to 213 K is very low being in the range from 0.6 to 2.8%, and is associated with a mixed transgranular+intergranular fracture mode. Elongation increases gradually from 300 to 800 K attaining a ductility peak at 800 K and then decreases rapidly with increasing temperature. At 600–800 K, the yield strength of Fe–45Al–0.05B exhibits anomalous temperature dependence with the yield strength peak at 800 K. The mode of fracture from 300 to 700 K is predominantly TGC and that at the ductility peak is ductile rupture with very deep dimples. At temperatures above 800 K the mode of fracture changes to a typical intergranular creep (fibrous) failure with numerous flat dimples (voids/cavities) at the grain boundary facets, which is associated with a tensile ductility drop. Fine particles (borides) are observed at the grain boundary facets, which assist the development of intergranular creep fracture.  相似文献   

18.
Electrical conductivity and Seebeck coefficient were measured in a temperature range of 320–1073 K for sintered samples of Bi2Sr2Ca1 – x Y x Cu2O y (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0). It has been found that the conduction behavior changes from n-type metallic to p-type semiconducting with increasing yttrium concentration. The power factors were in a range of 1.7–3.0 × 10–5 Wm–1 K–2 for the sample with x = 0.8, being maximized by the optimization of the yttrium concentration. The thermal conductivity for the sample with x = 0.8 was 0.73 Wm–1 K–1 at 310 K, and decreased with increasing temperature. The values of thermoelectric figure of merit were estimated to be in a range of 3.4–4.8 × 10–5 K–1 at temperatures of 320–673 K for the sample with x = 0.8.  相似文献   

19.
The results are given of experimental investigations of the static and dynamic low-temperature crack resistance of 1OKhND, St-38-b2, 09G2S, St20, and VSt3sp steels and weld joints of the metal structures of load lifting machines in the 203–293 K range of outdoor temperatures. The ductile-to-brittle transition temperatures are given. The temperature relationships of mechanical properties and stress intensity factors in static Kc, dynamic K c d , and cyclic loading Kfc are established. The results may be used in calculations of residual strength and residual life of metal structures with cracks.Translated from Problemy Prochnosti, No. 5, pp. 29–34, May, 1991.  相似文献   

20.
Highly crystallized graphite films were prepared by heat treatment of carbonized polyimide films (Kapton) at temperatures of 2700 and 3050° C. Interlayer spacing d 002 at room temperature, and electrical resistivity, magnetoresistance and Hall coefficient at room and liquid nitrogen temperatures were measured. All of these data indicate high crystallinity of the graphitized Kapton films obtained. For the graphite films heat treated at 3050° C mean-square mobilities were estimated from the magnetoresistance data at 1 T to be 0.91 m2 V–1 sec–1 at room temperature and 2.3 m2 V–1 sec–1 at liquid nitrogen temperature; the value at liquid nitrogen temperature corresponds to that for a pyrolytic graphite heat treated at 3200° C for 1 h (PG 3200). Magnetic field dependence of Hall coefficient at liquid nitrogen temperature for this sample also agrees well with that for PG 3200. Scanning electron micrographs on the surfaces show that the present graphite films consist of grains of large crystallites, and grain size increases as the crystallinity of the material improves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号