共查询到18条相似文献,搜索用时 46 毫秒
1.
一种基于逆序广义2近邻的图像多重复制粘贴篡改检测算法 总被引:1,自引:0,他引:1
为了解决数字图像多重复制粘贴篡改检测问题,克服广义2近邻(g2NN)算法对匹配特征点漏检的缺点,该文提出逆序广义2近邻(Rg2NN)算法。在计算匹配特征点时,该算法采用逆序方式计算特征点之间的匹配关系,可以更加准确地计算出所有与待检测特征点相匹配的特征点。实验证明,Rg2NN算法比g2NN算法计算出来的匹配特征点更加准确,提高了g2NN算法对多重复制粘贴篡改图像的检测能力,当图像中的一块区域被复制后在多处粘贴,或多块区域被复制粘贴时可以准确计算出复制粘贴区域。 相似文献
2.
3.
《无线电通信技术》2015,(3):34-37
图像的复制-粘贴篡改是常见的图像篡改方法之一。现有基于SIFT特征的算法能够有效地检测复制-粘贴篡改,但由于SIFT特征本身不能抵抗翻转,因此,这些方法不能检测出具有翻转操作的复制-粘贴篡改。基于SIFT特征,提出了一种抗翻转的图像复制-粘贴篡改检测算法。通过在检测框架中引入图像预处理操作,不仅能够有效地检测出存在翻转的复制-粘贴篡改块,而且能够抵抗旋转、缩放等图像处理行为。同时,在SIFT关键点匹配环节提出了ng2NN匹配方法,提高了算法的检测效果。实验结果证明了所提出算法在抵抗翻转、缩放、旋转以及检测多重复制-粘贴篡改等方面的有效性。 相似文献
4.
针对现有图像复制粘贴篡改检测算法计算复杂度过高的问题,提出了一种基于分组尺度不变特征变换的图像复制粘贴篡改快速检测算法。首先,利用简单线性迭代聚类将输入图像分割成非重叠且不规则的块;然后,根据图像块内结构张量属性将其分为平坦块、边缘块和角点块,提取图像块内的SIFT特征点作为块特征;最后,通过块特征的类间匹配定位篡改区域。所提算法通过图像块分类和类间匹配,在保证检测效果的同时,有效地降低了特征匹配定位篡改区域阶段的时间复杂度。实验结果表明,所提算法检测准确率为97.79%,召回率为90.34%,F值为93.59%;图像尺寸为1 024像素×768像素时算法时间复杂度为12.72 s,图像尺寸为3 000像素×2 000像素时算法时间复杂度为639.93s。与已有的复制粘贴算法相比,所提算法能够快速精准地定位篡改区域,且具有较好的稳健性。 相似文献
5.
图像内区域复制粘贴篡改鉴定 总被引:1,自引:0,他引:1
区域复制粘贴篡改检测算法是以图像块匹配为基础的,然而传统的匹配算法计算量大,匹配速度慢,效率低下.针对现有的图像内区域复制粘贴检测算法计算量大,时间复杂度高的问题提出一种有效快速的检测与定位篡改区域算法.首先利用小波变换获取图像低频区域,然后对得到的图像低频部分进行分割,然后对分割后得到的每个图像块进行DCT变换,通过特征向量排序缩小匹配空间,最后通过经验阈值进行真伪鉴定,实验结果表明该算法过程中除掉图像冗余,减少检测块数,降低了时间复杂度,提高了检测效率. 相似文献
6.
针对图像中特征提取不均匀、单尺度超像素划分对伪造定位结果影响较大的问题,提出一种基于深度特征提取和图神经网络(graph neural network,GNN) 匹配的图像复制粘贴篡改检测(cope-move forgery detection,CMFD) 算法。首先将图像进行多尺度超像素分割并提取深度特征,为保证特征点数目充足,以超像素为单位计算特征点分布的均匀度,自适应降低特征提取阈值;随后引入新的基于注意力机制的GNN特征匹配器,进行超像素间的迭代匹配,且用随机采样一致性(random sample consensus,RANSAC) 算法消除误匹配;最后将多尺度匹配结果进行融合,精确定位篡改区域。实验表明,所提算法具有良好的性能,也证明了GNN在图像篡改检测领域的可用性。 相似文献
7.
8.
针对能够用于图像篡改的Seam-Carving技术,提出了一种基于扩展的马尔科夫特征的Seam-Carving篡改识别算法。该算法充分考虑了Seam-Carving操作导致的图像频域特征的变化,将传统的利用马尔科夫转移概率矩阵求取的图像特征和基于扩展的马尔科夫转移概率特征进行融合,而后利用支持向量机进行分类训练,从而达到有效识别基于Seam-Carving的图像篡改。实验结果表明,提出的方案性能优于传统的基于马尔科夫转移矩阵的特征选择方法以及现有的一些该类图像篡改检测方法。 相似文献
9.
基于图像背景噪声特性的篡改检测 总被引:1,自引:0,他引:1
数字图像都包含有一部分来自成像过程或者数字压缩的背景噪声,如果两幅不同背景噪声的图像被拼接在一起,则图像篡改区域和其他区域的噪声特性会有差异。本文基于一种估计信道信噪比的高阶统计量法提出了一种新的图像背景噪声的盲估计算法。通过对图像进行分块计算每块的噪声方差,从而检测图像篡改部分。此算法通过二次加噪的方法解决了高阶统计量法中必须已知原始信号的问题,实现了待检测图像噪声的盲估计。实验结果显示该算法能有效估计图像的噪声方差从而达到检测局部篡改的目的。并且图像的缩放和压缩对检测结果影响很小,算法具有较好的鲁棒性。 相似文献
10.
针对数字图像检测中一类常见的复制-粘贴图像篡改,提出了一种基于小波变换和奇异值分解的检测算法。该算法利用小波变换提取图像的低频分量,对低频分量分块提取奇异值特征,然后将特征矢量进行按行字典排序,并且配合图像块的偏移位置信息,进行图像复制伪造区域的检测和定位。实验表明该算法大大减小了特征向量的维数,从而提高了相似块的匹配检测效率。为了更方便快捷的检测图像是否被恶意篡改,设计了简单明了的系统检测界面,只需载入待检测的图像并输入相应的参数就能进行检测,最后将检测结果返回给界面,而且系统完成了篡改检测算法的DSP硬件实现,该算法将有利于推动数字图像取证技术的理论研究与应用推广的发展。 相似文献
11.
为了解决当前图像伪造定位技术因使用了CFA 插值,易形成颜色插值噪声而降低分辨率,导致其难以检测微小篡改区域,使其伪造检测精度较低等不足,本文提出了像素预测误差耦合似然映射的图像伪造检测算法。首先,分析颜色滤波阵列CFA插值模型,并从图像中提取绿色分量;随后,嵌入权重因子,构造预测误差及其权重方差计算模型;根据预测误差与贝叶斯理论,定义伪造特征统计模型,识别出趋于零的特征值;最后,根据特征统计模型,建立其似然率模型,输出伪造映射,完成检测。仿真结果表明:与当前图像伪造定位机制相比,本文算法拥有更强的鲁棒性,能识别定位出微小伪造像素;且拥有更高的AUC值与理想的ROC曲线。 相似文献
12.
Zhuzhu WANG 《通信学报》2019,40(4):171-178
Aiming at the defects of traditional image tampering detection algorithm relying on single image attribute,low applicability and current high time-complexity detection algorithm based on deep learning,an U-shaped detection network image forgery detection algorithm was proposed.Firstly,the multi-stage feature information in the image by using the continuous convolution layers and the max-pooling layers was extracted by U-shaped detection network,and then the obtained feature information to the resolution of the input image through the upsampling operation was restored.At the same time,in order to ensure higher detection accuracy while extracting high-level semantic information of the image,the output features of each stage in U-shaped detection network would be merged with the corresponding output features through the upsampling layer.Further the hidden feature information between tampered and un-tampered regions in the image upon the characteristics of the general network was explored by U-shaped detection network,which could be realized quickly by using its end-to-end network structure and extracting the attributes of strong correlation information among image contexts that could ensure high-precision detection results.Finally,the conditional random field was used to optimize the output of the U-shaped detection network to obtain a more exact detection results.The experimental results show that the proposed algorithm outperforms those traditional forgery detection algorithms based on single image attribute and the current deep learning-based detection algorithm,and has good robustness. 相似文献
13.
With advancement of media editing software, even people who are not image processing experts can easily alter digital images. Various methods of digital image forgery exist, such as image splicing, copy-move forgery, and image retouching. The most common method of tampering with a digital image is copy-move forgery, in which a part of an image is duplicated and used to substitute another part of the same image at a different location. In this paper, we present an efficient and robust method to detect such artifacts. First, the tampered image is segmented into overlapping fixed-size blocks, and the Gabor filter is applied to each block. Thus, the image of Gabor magnitude represents each block. Secondly, statistical features are extracted from the histogram of orientated Gabor magnitude (HOGM) of overlapping blocks, and reduced features are generated for similarity measurement. Finally, feature vectors are sorted lexicographically, and duplicated image blocks are identified by finding similarity block pairs after suitable post-processing. To enhance the algorithm’s robustness, a few parameters are proposed for removing the wrong similar blocks. Experiment results demonstrate the ability of the proposed method to detect multiple examples of copy-move forgery and precisely locate the duplicated regions, even when dealing with images distorted by slight rotation and scaling, JPEG compression, blurring, and brightness adjustment. 相似文献
14.
Noise discrepancies in multiple scales are utilized as indicators for image splicing forgery detection in this paper. Specifically, the test image is initially segmented into superpixels of multiple scales. In each individual scale, noise level function, which reflects the relation between noise level and brightness of each segment, is computed. Those segments not constrained by the noise level function are regarded as suspicious regions. In the final step, pixels appears in suspicious regions of each scale, after necessary morphological processing, are marked as spliced region(s). The Optimal Parameter Combination Searching (OPCS) Algorithm is proposed to determine the optimal parameters during the process. Two datasets are created for training the optimal parameters and to evaluate the proposed scheme, respectively. The experimental results show that the proposed scheme is effective, especially for the multi-objects splicing. In addition, the proposed scheme is proven to be superior to the existing state-of-the-art method. 相似文献
15.
针对目前的图像篡改数据集中缺少同时包含多种篡改操作的单张图像的问题,构建了包含多种图像篡改手段的综合数据集(MTO Dataset),每张图片包含复制移动、拼接和移除中的2种或3种篡改操作。针对多篡改检测,提出了一种基于改进CenterNet的图像多篡改检测模型,将RGB图像和经过隐写分析得到的噪声特征图作为特征提取网络的输入,在特征提取网络ResNet-50的每一层卷积前加入门控通道注意力转换单元以促进特征通道间关系。为得到更具辨别性的特征,通过改进后的注意力机制自适应学习并调节特征权重,最后使用改进的损失函数优化边框预测的准确度。实验结果证明,与当前先进模型DETR、EfficientDet和VarifocalNet相比,该模型的F1分数提升0.4%~7.4%,检测速率提高1.32~3.06倍。 相似文献
16.
17.
提出了一种基于相位相关法和加速鲁棒特性(SURF:Speeded-Up Robust Features)特征点匹配相结合的序列图像自动拼接算法。首先,利用相位相关法计算归一化相位相关度,通过最大相关度求交进行序列图像的自动排序,并计算得到平移参数;在平移参数指导下,粗估测特征检测感兴趣区域(ROI:Region of ... 相似文献
18.
As a popular image manipulation technique, object removal can be achieved by image-inpainting without any noticeable traces, which poses huge challenges to passive image forensics. The existing detection approach utilizes full search for block matching, resulting in high computational complexity. This paper presents an efficient forgery detection algorithm for object removal by exemplar-based inpainting, which integrates central pixel mapping (CPM), greatest zero-connectivity component labeling (GZCL) and fragment splicing detection (FSD). CPM speeds up suspicious block search by efficiently matching those blocks with similar hash values and then finding the suspicious pairs. To improve the detection precision, GZCL is used to mark the tampered pixels in suspected block pairs. FSD is adopted to distinguish and locate tampered regions from its best-match regions. Experimental results show that the proposed algorithm can reduce up to 90% of the processing time and maintain a detection precision above 85% under different kinds of object-removed images. 相似文献