首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applications of ultrafiltration membrane often deal with feed streams containing amylose starch. This paper describes a detailed investigation of amylose fouling during ultrafiltration. Commercial membranes made of polysulfone and fluoro polymer were used. Both adsorptive and ultrafiltration fouling were investigated. Experiments using different membrane characteristics, feed concentrations and trans-membrane pressures were carried out. The resulting fouling was characterized by water flux and contact angle measurements and was visualized by scanning electron microscopy (SEM). The results suggest that solute adsorption has occurred as noticed by significant water flux reductions as well as changes in membrane characteristics. Further, both reversible and irreversible fouling have occurred during ultrafiltration with irreversible fouling was more dominant. Apparently, cake layer formation initiated by either adsorption due to hydrophobic–hydrophobic interactions or pore blocking is the dominant fouling mechanism. However, pore narrowing instead of pore blocking was also observed for the membrane having large and relative uniform pore structure or for the ultrafiltration using low trans-membrane pressure or low solute concentration. Membrane autopsy using SEM confirmed the formation of solute layer on the membrane surface.  相似文献   

2.
Control of membrane fouling is important for more efficient use of membranes in water treatment. Control of physically irreversible fouling, which is defined as fouling that requires chemical cleaning to be cancelled, is particularly important for reduction of operation cost in a membrane process. In this study, a long-term filtration experiment using three different types of MF and UF membranes was carried out at an existing water purification plant, and the evolution of physically irreversible fouling was investigated. The experimental results demonstrated that the extent of physically irreversible fouling differed significantly depending on the membrane type. Cleaning of the fouled membranes with various chemical reagents demonstrated that organic matter was mainly responsible for physically irreversible fouling. Organic matter that had caused physically irreversible fouling in the long-term operation was desorbed from the fouled membranes and was subjected to Fourier transform infrared and 13C nuclear magnetic resonance analyses. These analyses revealed that carbohydrates were dominant in the membrane foulant regardless of the type of membrane. Based on measurements of molecular weight distribution of organic matter in the feedwater and the permeates from the membranes, a two-step fouling mechanism is proposed to explain the dominance of carbohydrates in the foulant: hydrophobic (humic-like) components with small molecular weight are first adsorbed on the membrane and, consequently, narrow the size of micro-pores of membranes, and then hydrophilic (carbohydrate-like) compounds with larger molecular weight plug the narrowed pores or the hydrophilic compounds are adsorbed onto the membrane surface conditioned by the hydrophobic components.  相似文献   

3.
Fouling and subsequent chemical cleaning of nanofiltration (NF) membranes used in water quality control applications are often inevitable. To unravel the mechanisms of organic fouling and chemical cleaning, it is critical to understand the foulant-membrane, foulant-foulant, and foulant-cleaning agent interactions at the molecular level. In this study, the adhesion forces between the foulant and the membrane surface and between the bulk foulant and the fouling layer were determined by atomic force microscopy (AFM). A carboxylate modified AFM colloid probe was used as a surrogate for humic acid, the major organic foulant in natural waters. The interfacial force data were combined with the NF membrane water flux measurements to elucidate the mechanisms of organic fouling and chemical cleaning. A remarkable correlation was obtained between the measured adhesion forces and the fouling and cleaning behavior of the membrane under various solution chemistries. The AFM measurements further confirmed that divalent calcium ions greatly enhance natural organic matter fouling by complexation and subsequent formation of intermolecular bridges among organic foulant molecules. Efficient chemical cleaning was achieved only when the calcium ion bridging was eliminated as a result of the interaction between the chemical cleaning agent and the fouling layer. The cleaning efficiency was highly dependent on solution pH and the concentration of the chemical cleaning agent.  相似文献   

4.
Understanding membrane fouling mechanisms of key nutrition indicators in fruit juices during nanofiltration (NF) are important for quality control of products and manufacture processes. This study evaluated the effects of operating and molecular parameters of six phenolic compounds on fouling resistances during NF with two membranes. Results showed that fouling resistances and mechanisms were significantly different among the six representative phenolic compounds as a result of different molecular parameters such as acidity coefficient, molecular refractive index, octanol-water partition coefficient, and lipo-hydro partition coefficient. Operating time, solution concentration, and transmembrane pressure can also significantly affect the membrane fouling during nanofiltration of gallic acid solution. The images obtained by field emission scanning electron microscopy and atomic force microscopy on new, fouled, and cleaned membranes showed the fouling mechanisms intuitively. For phenolic compounds, a cake/gel layer as a reversible fouling was the main fouling resistance, and the adsorption was a significant role in the irreversible fouling resistance.  相似文献   

5.
Characterization of cake layer in submerged membrane bioreactor   总被引:4,自引:0,他引:4  
Cake layer formation on the membrane surface has been a major challenge in the operation of membrane bioreactors (MBRs). In this study, the cake layer formation mechanism in an MBR used for synthetic wastewater treatment was investigated. The major components of cake layer were systematically examined by particle size analyzer (PSA), scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), X-ray fluorescence (XRF), energy-diffusive X-ray analyzer (EDX), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that the small particles in sludge suspension had a strong deposit tendency on the membrane surface. The SEM and CLSM analysis exhibited that bacterial clusters and polysaccharides were significant contributors to membrane fouling. The main components of biopolymers were identified as proteins and polysaccharide materials by the FTIR. The examination by EDX and XRF demonstrated that Mg, Al, Ca, Si, and Fe were the major inorganic elements in fouling cake. Furthermore, the results suggest that bridging between deposited biopolymers and inorganic compounds could enhance the compactness of fouling layer. During the operation of MBRs, the biopolymers and inorganic elements in the bioreactor should be controlled to minimize membrane fouling.  相似文献   

6.
Fluid dynamic gauging (FDG) was used to track the thickness of the cake layer formed during the microfiltration of a 45° Brix molasses solution using a 1.5 μm polysulphone membrane. A simultaneous measure of flux and deposit thickness throughout the full membrane operating cycle is reported. Asymptotic fouling thicknesses of ca. 100 μm are developed after 30 min of filtration. Accordingly, flux declines are severe at ca. 93%. Permeate line closed (PLC) operation leads to the complete removal of the deposit layer, and the recovery of 60% of the flux. However, permeate line open (PLO) operation leads to only a 50% flux recovery and an asymptotic deposit thickness of 10 μm. An initial increase and subsequent reduction in flux during chemical cleaning has also been recorded for both acid and alkali cleaning regimes. Effective cleaning regimes for membranes fouled by molasses require an alkali stage followed by an acid stage.  相似文献   

7.
Desalination of seawater using reverse osmosis (RO) technology is an important option available to water-scarce coastal regions. A major challenge to seawater reverse osmosis (SWRO) is membrane productivity decline due to fouling. Systematic studies in the area of SWRO fouling are lacking as compared to RO fouling by freshwater. The effect of the type of pretreatment employed ahead of the SWRO process has been recognized to be of critical importance in SWRO fouling. The objective of this study was to evaluate the effect of pretreatment on SWRO performance using bench scale experiments. The effect of different pretreatment strategies on SWRO flux decline was simulated using prefiltration of the SWRO feedwater using different filtration size ranges. The prefiltration size ranges used were selected to mimic the size fractions associated with different SWRO pretreatment processes. It was found that particulate matter greater than 1 microm (representing media filtration) caused most of the RO fouling. On the other hand, significant reduction in fouling was observed when membrane filtration was used (microfiltration represented by 0.1 microm prefiltration and ultrafiltration represented by 100 kDa prefiltration). There was no significant difference in flux decline between these two membrane filtration types. The lowest RO flux decline was observed when a tight ultrafiltration membrane (20 kDa) was used as prefiltration. The RO fouling observed was modeled using the gel layertheory, which could be used to satisfactorily describe fouling by different dissolved fractions of seawater. The observed SWRO fouling trends were confirmed using specially adapted attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of the fouled membrane surface.  相似文献   

8.
The use of microfiltration membranes in the dairy industry to remove bacterial spores has been applied for some time using the so-called “bactocatch” process. However, these microfiltration units have high energy demands since high linear velocities are required during operation, to avoid problems related to fouling and concentration polarization. In this work, optimization of a backflushing technique combined with reverse asymmetric membranes (‘backshock’ technique) was used to avoid the fouling and concentration polarization problems, allowing the use of low linear velocities and resulting in low-energy costs. In the novel ‘backshock’ technique, the permeate is pressurized during a very short time interval (less than 1 s) and with a frequency around 0.2-1 s−1. The benefit of using a reverse asymmetric membrane is related to the formation of a very open fouling layer just inside the porous support layer and the build-up of a concentration profile of the proteins inside the porous structures. The microfiltration of skim milk using ceramic and polymeric membranes was studied with different membrane structures. The backshock technique, combined with reverse asymmetric membranes of pore size of 0.87 μm, allows the effects of concentration polarization and fouling to be controlled, achieving very high (500 L h−1 m−2) and stable fluxes with 100% casein transmission and a high retention of spores (reduction by a factor 104-105) even at low linear velocities (0.5-1 ms−1).  相似文献   

9.
Organic fouling of reverse osmosis (RO) membranes and its relation to foulant--foulant intermolecular adhesion forces has been investigated. Alginate and Suwannee River natural organic matter were used as model organic foulants. Atomic force microscopy was utilized to determine the adhesion force between bulk organic foulants and foulants deposited on the membrane surface under various solution chemistries. The measured adhesion force was related to the RO fouling rate determined from fouling experiments under solution chemistries similar to those used in the AFM measurements. A remarkable correlation was obtained between the measured adhesion force and the fouling rate under the solution chemistries investigated. Fouling was more severe at solution chemistries that resulted in larger adhesion forces, namely, lower pH, higher ionic strength, presence of calcium ions (but not magnesium ions), and higher mass ratio of alginate to Suwannee River natural organic matter. The significant adhesion force measured with alginate in the presence of calcium ions indicated the formation of a crossed-linked alginate gel layer during fouling through intermolecular bridging among alginate molecules.  相似文献   

10.
Stevioside is one of the naturally occurring sweetener, which can be widely applied in food, drinks, medicine, and daily chemicals. Membrane separation has potential application in clarification of stevioside from pretreated stevia extract by ultrafiltration. In the present study, namely 5-, 10-, 30-, and 100-kDa molecular weight cutoff membranes have been used. Quantification of membrane fouling during ultrafiltration is essential for improving the efficiency of such filtration systems. A systematic analysis was carried out to identify the prevailing mechanism of membrane fouling using a batch unstirred filtration cell. It was observed that the flux decline phenomenon was governed by cake filtration in almost all the membranes. For 100 kDa membrane, both internal pore blocking and cake filtration are equally important. Resistance in series analysis shows that the cake resistance is several orders of magnitude higher than the membrane resistance. The cake resistance is almost independent of transmembrane pressure drop, which indicates the incompressible nature of the cake. A response surface analysis was carried out to quantify the development of cake resistance with time during ultrafiltration of various membranes. Quality parameters show that the 30-kDa membrane is better suited for clarification purposes. Identification of the fouling mechanism would aid in the process of design and scaling up of such clarification setup in future.  相似文献   

11.
In this study, the flux decline mechanisms were identified during membrane clarification of red plum juice at several processing parameters, including pore size, membrane type, transmembrane pressure, temperature and velocity. The results were used to investigate the effect of changes in operating conditions on the intensity of membrane fouling. Also, scanning electron microscopy (SEM) was used for analysing fouling‐layer morphology. These results showed that the main mechanism responsible for membrane fouling was cake formation (over 95% fitness) occurring in the first stage of the process. Intermediate, standard and complete blockings were formed during most of the runs as filtration proceeded. The results also indicated that increasing the temperature from 30 to 40 °C was the most effective factor in decreasing cake‐layer fouling, reducing it by about 66.7%. Furthermore, an increase in processing velocity of up to 0.5 m s?1 had the greatest effect on intermediate blocking, reducing it by about 86.1%. Also, increasing pressure up to 2.9 bar completely eliminated standard blocking and complete blocking. Finally, microstructure analysis of membrane using SEM confirmed that cake formation had the greatest impact on membrane fouling.  相似文献   

12.
Ultrafiltration process has been applied widely in food processing industry for the last 20 years due to its advantages over conventional separation processes such as gentle product treatment, high selectivity, and lower energy consumption. Ultrafiltration becomes an essential part in food technology as a tool for separation and concentration. However, membrane fouling compromises the benefits of ultrafiltration as fouling significantly reduces the performance and hence increases the cost of ultrafiltration. Recent advances in this area show the various intensive studies carried out to improve ultrafiltration, focusing on membrane fouling control and cleaning of fouled membranes. Thus, this paper reviews recent developments in ultrafiltration process, focusing on fouling mechanisms of ultrafiltration membranes as well as the latest techniques used to counter membrane fouling.  相似文献   

13.
《Journal of dairy science》1988,71(3):604-612
Pasteurized whole milk was fractionated with a pilot-scale, plate and frame, ultrafiltration system to study membrane fouling and flux decline. Concentration factor was set at approximately 1.4× to simulate the first stage of a multistage UF system. Proteinaceous membrane foulant was characterized by SDS-PAGE. Distribution of proteins in the foulant was very different from distribution of proteins in milk. Whey proteins, α-lactalbumin and β-lactoglobulin, accounted for 95% of the proteinaceous membrane foulants. Very little casein was identified as membrane foulant.The approximate amount of protein in the membrane foulant was estimated to be .6 g/m2 of membrane area. Permeate flux studies indicated that flux decline is severe in the early stages of milk ultrafiltration and is associated with irreversible adsorption of protein on the membrane surface. A threefold difference between the water flux of clean membranes and fouled membranes was attributed to the adsorbed foulant. Identification and characterization of membrane foulants and the mechanism of their interaction with membrane surfaces should lead to the design of more efficient ultrafiltration systems for the dairy industry.  相似文献   

14.
Fouling in membranes used for water treatment has been attributed to the presence of natural organic matter (NOM) in water. There have been reports recently on the contribution of hydrophilic fractions of NOM (e.g., carbohydrate-like substances) to fouling, but there is still little information about the physicochemical interactions between membranes and carbohydrate-like substances. In this study, the affinity of carbohydrate-like substances to two different microfiltration (MF) membranes was investigated by using atomic force microscopy (AFM) and functionally modified microspheres. Microspheres were attached to the tip of the cantilever in an AFM apparatus and the adhesion forces working between the microspheres and the membranes were determined. The microspheres used in this study were coated with either hydroxyl groups or carboxyl groups to be used as surrogates of carbohydrate-like substances or humic acid, respectively. Measurements of adhesion force were carried out at pH of 6.8 and the experimental results demonstrated that the adhesion force to membranes was strong in the case of hydroxyl groups but weak in the case of carboxyl groups. The strong adhesion between the hydroxyl group and the membrane surface is explained by the strong hydrogen bond generated. It was also found that the affinity of the hydroxyl group to a polyvinylidenefluoride (PVDF) membrane was much higher than that to a polyethylene (PE) membrane, possibly due to the high electronegative nature of the PVDF polymer. The time course of changes in the affinity of hydroxyl group to a membrane used in a practical condition was investigated by repeatedly carrying out AFM force measurements with PE membrane specimens sampled from a pilot plant operated at an existing water treatment plant. Microspheres exhibited strong affinity to the membrane at the initial stage of operation (within 5 days), but subsequently exponential reduction of the affinity was seen until the end of operation, as a result of fouling development. However, the magnitude of affinity of hydroxyl-modified microspheres was much higher than that of carboxyl-modified microspheres even after the significant reduction of affinity of hydroxyl-modified microspheres to the membranes was seen. The results obtained in this study partially explain why hydrophilic NOM dominated over humic substances in foulants of membranes used for water treatment in recent studies on fouling.  相似文献   

15.
Doped diamond-like carbon (DLC) coated stainless steel surfaces were studied for their fouling behaviour with milk and whey protein isolate (WPI) solution at both laboratory and pilot-scale. Stainless steel (316 SS 2B) surfaces were modified with three different doped DLC coatings (DLC-1, DLC-2 and DLC-3) using plasma assisted chemical vapour deposition. At the laboratory-scale, the DLC-1 coated surface showed a statistically significant reduction in the mass of milk fouling deposits. However, at the pilot-scale, none of the modified surfaces offered significant benefit in fouling mitigation over the control stainless steel surface. Subsequently, in the laboratory-scale trials with a whey protein isolate (WPI) solution, the mass of fouling deposits for all doped DLC modified surfaces were about 35–40% lower in comparison to their controls when fouled for 120 min. However, these benefits were reduced to less than 15% with longer fouling duration. Thus, the results obtained in this study found no commercial benefit of modified surfaces in fouling mitigation when fouled for longer times with skim milk, whole milk or WPI solution.  相似文献   

16.
《Journal of dairy science》2017,100(4):2577-2581
Milk fouling and biofilms are common problems in the dairy industry across many types of processing equipment. One way to reduce milk fouling and biofilms is to modify the characteristics of milk contact surfaces. This study examines the viability of using Thermolon (Porcelain Industries Inc., Dickson, TN), a sol-gel-based surface modification of stainless steel, during thermal processing of milk. We used stainless steel 316L (control) and sol-gel-modified coupons in this study to evaluate fouling behavior and bacterial adhesion. The surface roughness as measured by an optical profiler indicated that the control coupons had a slightly smoother finish. Contact angle measurements showed that the modified surface led to a higher water contact angle, suggesting a more hydrophobic surface. The modified surface also had a lower surface energy (32.4 ± 1.4 mN/m) than the control surface (41.36 ± 2.7 mN/m). We evaluated the susceptibility of control and modified stainless steel coupons to fouling in a benchtop plate heat exchanger. We observed a significant reduction in the amount of fouled layer on modified surfaces. We found an average fouling weight of 19.21 mg/cm2 and 0.37 mg/cm2 on the control and modified stainless steel coupons, respectively. We also examined the adhesion of Bacillus and biofilm formation, and observed that the modified stainless steel surface offered greater resistance to biofilm formation. Overall, the Thermolon-modified surface showed potential in the thermal processing of milk, offering significantly lower fouling and bacterial attachment than the control surface.  相似文献   

17.
Clarification is the first step of inulin production from chicory juice, and membrane filtration as an alternative can greatly simplify this process, increase juice yield, improve product quality, and reduce the cost and waste volume. In this study, a rotating disk module (RDM) was used to investigate the clarification of chicory juice by four micro- and ultrafiltration membranes. Compared with dead end filtration, the RDM had a much higher permeate flux and product quality. High rotating speeds produced high permeate fluxes and reduced flux decline, because of the strong back transport of foulant from fouling layer to feed solution. At high rotating speeds of 1500–2000 rpm, the permeate flux increased with membrane pore size and transmembrane pressure (TMP), while at low rotating speeds (<1000 rpm), permeate flux was independent of membrane type and TMP due to a thick deposited fouling layer as a dominant filtration resistance, while carbohydrate transmission decreased at higher TMP because of denser cake layer as an additional selective membrane. The highest carbohydrate transmission (∼98%) and desirable permeate turbidity (2.4 NTU) was obtained at a TMP of 75 kPa and a rotating speed of 2000 rpm for FSM0.45PP membrane. With the RDM, the Volume Reduction Ratio (VRR) could reach 10 with a high permeate flux (106 L m−2 h−1) in the concentration test, and permeate was still rich in carbohydrate and well clarified. Chemical cleaning with 0.5% P3-ultrasil 10 detergent solution was able to recover 90% water flux of fouled membrane.  相似文献   

18.
Modes of natural organic matter fouling during ultrafiltration   总被引:1,自引:0,他引:1  
The fouling of ultrafiltration membranes by natural organic matter (NOM), isolated from a potable surface water source, was studied with an emphasis on elucidating fouling modes and the role of aggregates. NOM size was related to membrane pore sizes using parallel membrane fractionation and size exclusion chromatography, such analyses confirmed the predominance of low MW species and identified the presence of aggregates in concentrated NOM solutions. Cake formation was the dominant mode of fouling by the unfiltered feed, which contained aggregates. This was identified by a constant rate of increase in membrane resistance with permeate throughput and was independent of pore size over a 10-1000 kDa molecular weight cutoff (MWCO) range. Prefiltration (to remove aggregates) and dilution (to reduce aggregate concentration) reduced the rate of increase in membrane resistance for the low MWCO membranes but did not change the fouling mode. In contrast, such pretreatment prevented cake formation on the larger MWCO membranes and shifted the mode of fouling to pore blockage. The date lend support for the idea that an initial fouling layer of large aggregates can catalyze the fouling by lower MW species. The fouling layer could be removed from the large MWCO membranes by backwashing, but the lower MWCO membranes exhibited some irreversible fouling, suggesting that low MW species penetrated into the pore structure. A combined pore blockage-cake formation model described the data well and provided insight into how fouling modes evolve during filtration.  相似文献   

19.
Reverse osmosis and nanofiltration membranes fouled by humic acid were systematically characterized by transmission electron microscopy. All fouled membranes, except those with very low initial flux, were completely covered by a layer of humic acid whose thickness and density were greatly affected by the feedwater composition ([H+] and [Ca2+]) and initial flux. A low-density humic layer (about 0.1 g of purified Aldrich humic acid (PAHA)/cm3) was formed at low initial flux (2 m/day or less) at pH 7 without calcium. It was several times denser at a higher initial flux, pH 4.5, or 1 mM Ca2+. Corresponding to the denser foulant layers under these conditions, PAHA accumulation was greatly increased. The denser foulant layers together with the greater PAHA accumulations were responsible for the severe flux reductions. Both virgin and fouled membranes were characterized by streaming potential measurements. While considerable differences existed for virgin membranes, humic acid fouled membranes exhibited identical surface charge properties. The zeta potential of the fouled membranes was controlled by the humic acid layer due to its complete coverage of the membrane surfaces.  相似文献   

20.
Several stainless steel based surfaces with different properties were evaluated according to their fouling behaviour for different dairy products under different conditions. Surface properties were obtained by the following modification techniques: , and TiC ion implantation; diamond-like carbon (DLC) sputtering; DLC, DLC–Si–O and SiOx, plasma enhanced chemical vapor Deposition (PECVD); autocatalytic Ni–P–PTFE and silica coating. Aqueous solutions that simulate milk (SMUF – simulated milk ultrafiltrate for the mineral components, β-lactoglobulin for the protein components and FMF – fouling model fluid for complex milk systems) were used to study the fouling behaviour during pasteurisation. Bacteriological deposition studies were also performed with two heat resistant strains of Bacillus. The experiments were carried out at laboratory scale for the evaluation of calcium phosphate and protein deposition, and at pilot scale for adhesion of bacteria and deposits from complex milk systems.

In all cases, the fouling behaviour was affected by the surface material, although in different ways for the deposition or the cleaning phases. For the non-microbiological deposits (calcium phosphate, whey protein and FMF milk-based product), the Ni–P–PTFE surface was the most promising one, since it generally promoted less deposit build up and, in all cases, was the easiest to clean. On the other hand, for bacterial adhesion, the most suitable surface was the ion implanted (TiC) surface, which also showed less spores after the cleaning process.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号