首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loops 1:5 scaled Rossendorf coolant mixing model (ROCOM) mixing test facility. In particular thermal hydraulics analyses have shown, that weakly borated condensate can accumulate in the pump loop seal of those loops, which do not receive a safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shifted towards the reactor pressure vessel (RPV).In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side, the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities.  相似文献   

2.
ROCOM is a four-loop test facility used for the investigation of coolant mixing in the primary circuit of pressurized water reactors. Recently, a new sensor was developed for an improved visualisation and quantification of the coolant mixing in the downcomer. This new sensor array spans a dense measuring grid and covers nearly the whole downcomer. In the presented work, special emphasis was given to the comparison of the data of this sensor with the results of calculations using the Computational Fluid Dynamics (CFD) code ANSYS CFX. A coolant mixing experiment during natural circulation conditions has been conducted. The underlying scenario of this experiment is based on a boron dilution scenario following a SBLOCA event. The corresponding CFD code solution has been obtained using the Best Practice Guidelines. All main effects observed in the measurement are described by the calculation. The detailed comparison reveals that the calculation underestimates the coolant mixing inside the reactor pressure vessel.The measurement data, boundary conditions of the experiment and facility geometry can be made available to other CFD code users for benchmarking.  相似文献   

3.
The influence of density differences on the mixing of the primary loop inventory and the emergency core cooling (ECC) water in the downcomer of a pressurized water reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields.An experiment with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water was selected for validation of the CFD software packages CFX-5 and Trio_U. Two similar meshes with approximately 2 million control volumes were used for the calculations. The effects of turbulence on the mean flow were modeled with a Reynolds stress turbulence model in CFX-5 and a LES approach in Trio_U. CFX-5 is a commercial code package offered from ANSYS Inc. and Trio_U is a CFD tool which is developed by the CEA-Grenoble, France.The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: at higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this propagation. The ECC water falls in an almost vertical path and reaches the lower downcomer sensor directly below the inlet nozzle. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. Both CFD codes were able to predict well the observed flow patterns and mixing phenomena.  相似文献   

4.
It is known that under-borated coolant can accumulate in the loops and that it can be transported towards the reactor core during a loss-of-coolant-accident. Therefore, the mixing of weakly borated water inside the reactor pressure vessel was investigated using the ROCOM test facility. Wire-mesh sensors based on electrical conductivity measurement are used to measure in detail the spreading of a tracer solution in the facility. The mixing in the downcomer was observed with a measuring grid of 64 azimuthal and 32 vertical positions. The resulting distribution of the boron concentration at the core inlet was measured with a sensor integrated into the lower core support plate providing one measurement position at the entry into each fuel assembly.

The boundary conditions for this mixing experiment are taken from an experiment at the thermal hydraulic test facility PKL operated by AREVA Germany. The slugs, which have a lower density, accumulate in the upper part of the downcomer after entering the vessel. The ECC water injected into the reactor pressure vessel falls almost straight down through this weakly borated water layer and accelerates as it drops over the height of the downcomer. On the outer sides of the ECC streak, lower borated coolant admixes and flows together with the ECC water downwards. This has been found to be the only mechanism of transporting the lower borated water into the lower plenum. In the core inlet plane, a reduced boron concentration is detected only in the outer reaches of the core inlet. The minimum instantaneous boron concentration that was measured at a single fuel element inlet was found to be 66.3% of the initial 2500 ppm.  相似文献   


5.
The EU project FLOMIX-R was aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity.This report will focus on the computational fluid dynamics (CFD) code validation. Best practice guidelines (BPG) were applied in all CFD work when choosing computational grid, time step, turbulence models, modelling of internal geometry, boundary conditions, numerical schemes and convergence criteria. The strategy of code validation based on the BPG and a matrix of CFD code validation calculations have been elaborated. CFD calculations have been accomplished for selected experiments with two different CFD codes (CFX, FLUENT). The matrix of benchmark cases contains slug mixing tests simulating the start-up of the first main circulation pump which have been performed with three 1:5 scaled facilities: the Rossendorf coolant mixing model ROCOM, the Vattenfall test facility and a metal mock-up of a VVER-1000 type reactor. Before studying mixing in transients, ROCOM test cases with steady-state flow conditions were considered. Considering buoyancy driven mixing, experimental results on mixing of fluids with density differences obtained at ROCOM and the FORTUM PTS test facility were compared with calculations. Methods for a quantitative comparison between the calculated and measured mixing scalar distributions have been elaborated and applied. Based on the “best practice CFD solutions”, conclusions on the applicability of CFD for turbulent mixing problems in PWR were drawn and recommendations on CFD modelling were given. The results of the CFD calculations are mostly in-between the uncertainty bands of the experiments. Although no fully grid-independent numerical solutions could be obtained, it can be concluded about the suitability of applying CFD methods in engineering applications for turbulent mixing in nuclear reactors.  相似文献   

6.
Experimental investigations and computational fluid dynamics (CFD) calculations on coolant mixing in pressurised water reactors (PWR) have been performed within the EC project FLOMIX-R. The project aims at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity. Measurement data from a set of mixing experiments have been gained by using advanced measurement techniques with enhanced resolution in time and space. Slug mixing tests simulating the start-up of the first main circulation pump are performed with two 1:5 scaled facilities: the Rossendorf Coolant Mixing model ROCOM and the Vattenfall test facility. Additional data on slug mixing in a VVER-1000 type reactor have been gained at a 1:5 scaled metal mock-up at EDO Gidropress. Experimental results on buoyancy driven mixing of fluids with density differences have been obtained at ROCOM and the Fortum PTS test facility.Concerning mixing phenomena of interest for operational issues and thermal fatigue, flow distribution data available from commissioning tests at PWRs and VVER are used together with the data from the ROCOM facility as a basis for the flow distribution studies.In the paper, the experiments performed are described, results of the mixing experiments are shown and discussed. Efforts on computational fluid dynamics codes validation on selected mixing tests applying Best Practice Guidelines in code validation will be reported about in a separate paper.  相似文献   

7.
During the last years, boron dilution events with the potential of reactivity transients were an important issue of German PWR safety analyses. A coolant with a low-boron concentration could be collected in localized areas of the reactor coolant system, e.g., by separation of a borated reactor coolant into highly concentrated and diluted fractions (inherent dilution) which can occur during reflux-condenser heat transfer after a small break loss of coolant accident with a limited availability of the emergency core cooling systems.During the course of follower core assessments, TÜV NORD SysTec appraises safety analyses of boron dilution events presented by the utilities. These analyses are based on the simulation of boron dilution and transport processes in conjunction with a number of dedicated experiments. The analyses demonstrate that boron dilution events cannot lead to recriticality of the core. Hence, the boron concentration at the core inlet has to be determined.TÜV NORD SysTec applies the CFD code FLUENT for the investigation of boron dilution events in pressurized water reactors. To affirm the FLUENT abilities for the simulation of boron dilution events, a validation against the ROCOM experiment T6655_21 with a density-driven coolant mixing was performed. This validation proves that FLUENT is able to appropriately simulate the effects of boron transport and dilution such as streaks of coolant with lower density in the downcomer. Deficits were identified in the simulation of fluid layering in the cold leg, which fortunately have a rather small influence on the predicted core inlet concentration. Therefore, the boron concentration in the reactor core can be determined with sufficient accuracy to solve the safety issue, regardless of the core becoming critical or not.  相似文献   

8.
Detailed simulation of the thermal stresses of the reactor pressure vessel (RPV) wall in case of pressurized thermal shock (PTS) requires the simulation of the thermal mixing of cold high-pressure safety injection (HPI) water injected to the cold leg and flowing further to the downcomer. The simulation of the complex mixing phenomena including, e.g., stratification in the cold leg and buoyancy driven plume in the downcomer is a great challenge for CFD methods and requires careful validation of the used modelling methods.The selected experiment of Fortum mixing test facility modelling the Loviisa VVER-440 NPP has been used for the validation of CFD methods for thermal mixing phenomena related to PTS. The experimental data includes local temperature values measured in the cold leg and downcomer. Conclusions have been made on the applicability of used CFD method to thermal mixing simulations in case with stratification in the cold leg and buoyant plume in the downcomer.  相似文献   

9.
压水堆高压安注条件下冷热流体混合会导致承压热冲击现象,影响压力容器的使用寿命。本文基于ROCOM实验装置的实验数据,使用CFD方法对高压安注条件下有密度差的冷热流体混合现象进行了模拟,并对模拟结果进行了验证与分析。结果表明,在冷管段和下降段环腔中流体混合的主导因素分别为强迫流动混合和浮升力驱动混合。在仅有1条冷管段注入的情况下,进入下腔室的流体会再次回流至环腔,从而对冷却剂的混合特性产生影响。  相似文献   

10.
为探究反应堆压力容器下降段在喷放末期冷段安注过程中的水-蒸汽逆流特性,建立下降段逆向流动限制(CCFL)模型,开展了基于压力容器模化本体的下降段CCFL实验研究以及建模分析。通过实验研究获得了不同入口安注水流量、安注水过冷度、堆芯蒸汽流量等条件下的下降段环腔内的安注特性数据,并基于实验数据进行了CCFL建模分析。结果表明,开始发生CCFL的蒸汽无量纲流速与入口安注水无量纲流速呈现正相关,基于无量纲流速建立的模型斜率与入口安注水无量纲流速呈现高度指数关联。本文建立了适用于从不发生CCFL至不完全CCFL,再到完全CCFL的下降段水-蒸汽气液逆流全过程预测模型。  相似文献   

11.
The VATT-02 experiment, performed at Vattenfall, Sweden, with a 1/5th-scale model of a 3-loop PWR pressure vessel, has been simulated with the computational fluid dynamics (CFD) code CFX-5 at PSI, Switzerland. The simulations were initially part of the FLOMIX-R EU 5th Framework Programme, aimed at providing validation data prior to CFD codes being used to model full-size nuclear vessels. These studies were extended at PSI to examine mesh effects. Steady-state velocities and transient boron concentration distributions were plotted, and their sensitivity to different CFD models and mesh refinement examined. Steady-state velocities in the downcomer were not in good agreement with experiment at all instrumentation locations, but, nevertheless, predicted transient boron distribution and its minimum concentration at the core inlet were close to the measured data. Useful conclusions could be drawn for application to full reactor size.  相似文献   

12.
This work has been performed in the framework of the OECD/NEA thermalhydraulic benchmark V1000CT-2. This benchmark is related to fluid mixing in the reactor vessel during a MSLB accident scenario in a VVER-1000 reactor. Coolant mixing in a VVER-1000 V320 reactor was investigated in plant experiments during the commissioning of the Unit 6 of the Kozloduy nuclear power plant. Non-uniform and asymmetric loop flow mixing in the reactor vessel has been observed in the event of symmetric main coolant pump operation. For certain flow conditions, the experimental evidence of an azimuthal shift of the main loop flows with respect to the cold leg axes (swirl) was found.Such asymmetric flow distribution was analyzed with the Trio_U code. Trio_U is a CFD code developed by the CEA Grenoble, aimed to supply an efficient computational tool to simulate transient thermalhydraulic turbulent flows encountered in nuclear systems. For the presented study, a LES approach was used to simulate turbulent mixing. Therefore, a very precise tetrahedral mesh with more than 10 million control volumes has been created.The Trio_U calculation has correctly reproduced the measured rotation of the flow when the CAD data of the constructed reactor pressure vessel where used. This is also true for the comparison of cold leg to assembly mixing coefficients. Using the design data, the calculated swirl was significantly underestimated. Due to this result, it might be possible to improve with CFD calculations the lower plenum flow mixing matrices which are usually used in system codes.  相似文献   

13.
The application of the laser induced fluorescence technique to the study of liquid mixing in the downcomer of a pressurized water reactor is presented. The scenario is that of a boron dilution event, in which a deborated slug is set in motion by the actuation of a reactor coolant pump. A separate effects test facility, built with transparent plexiglas, is used to conduct optical measurements of the slug mixing along its path to the core. The optical assembly is described and the conditions for the implementation of laser induced fluorescence as a quantitative measurement technique are discussed. Results from a slug injection experiment are shown which demonstrate the high-resolution capabilities of this procedure as applied to the study of liquid mixing in the complex geometry of a reactor vessel downcomer.  相似文献   

14.
Life time extension assessment is a very important issue for the nuclear community. A serious threat to the life time extension of a Reactor Pressure Vessel (RPV) is an occurrence of the Pressurized Thermal Shock (PTS) during an Emergency Core Coolant (ECC) injection in a loss-of-coolant accident. Traditional system codes fail to predict the complex three-dimensional flow phenomena resulting from such ECC injection. Improved results have been obtained using Computational Fluid Dynamics (CFD) analysis based on the Reynolds-Averaged Navier-Stokes (RANS) equations. However, it has been also shown that transient RANS approaches are less capable to predict the complex flow features in the downcomer of the RPV. More advanced CFD methods like Large-Eddy Simulation (LES) are required for modeling of these flow phenomena. This paper addresses the feasibility of the application of LES for single-phase PTS. Furthermore, the required grid resolution for such LES analyses is identified by evaluation of the solution on different mesh sizes. A buoyancy-driven PTS experiment has been considered here. This experiment has been performed in the 1:5 linear scale Rossendorf Coolant Mixing Model (ROCOM) facility. In the applied numerical model, the incompressible Navier-Stokes equations are solved in the LES formulation, with an additional transport equation for a scalar, which is responsible for driving the embedded buoyancy term in the momentum equations. Instantaneous mixing characteristics are investigated based on evaluation of the scalar concentration. The analysis presented in this paper indicates that the application of LES is feasible nowadays for single-phase PTS. It is demonstrated that the mixing in the downcomer is quite sensitive to small turbulent disturbances at the ECC inlet, i.e., two simulations performed with slightly different fluctuations at the inlet result in substantially different flow in the downcomer. This complicates the analysis of the data from simulations and suggests that evaluation of the results should be performed in the frequency-amplitude domain instead of the classically employed temporal data analysis.  相似文献   

15.
The core bypass phenomenon of borated water injected through direct vessel injection (DVI) nozzles in APR1400 (Advanced Power Reactor 1400MWe) during main steam line break (MSLB) accidents with a reactor coolant pump (RCP) running mode has been simulated using a two-channel and one-dimensional system analysis model code (MARS), and a three-dimensional computational fluid dynamics (CFD) code (FLUENT). A visualization experiment has also been performed using a scaled-down model of the APR1400. The MARS analysis has predicted a serious core bypass phenomenon of borated water, while the CFD analysis has shown results opposite to the MARS results. The CFD analysis has shown that the flow pattern in the downcomer is fully three-dimensional and that vortex flow structures are formed near the cold legs so that the borated water might pass without difficulty into the high flow region of the cold legs and flow well into the lower downcomer. The visualization experiment has shown that the borated water flows well to the lower plenum, as in the CFD analysis. Both the CFD analysis and visualization experiment have proved that a serious core bypass phenomenon of borated water might not happen in the APR1400. These results are quite different from those predicted by MARS.  相似文献   

16.
为研究摇摆条件下小型反应堆强迫循环时堆芯入口处冷却剂的流量分配特性,采用数值计算的方法,使用计算流体力学(CFD)软件STAR-CCM+建立小型反应堆模型,完成模型验证,开展摇摆条件下反应堆堆芯入口流量分配特性研究。结果表明,堆芯入口位置距摇摆轴的距离越大,摇摆幅度越大,堆芯入口冷却剂流量波动越大;长周期摇摆对流量影响较小,但随着摇摆周期减小,冷却剂流量会发生跃变。堆芯入口冷却剂分布不均匀程度随摇摆幅度的增加而增加,但对摇摆周期变化并不敏感。  相似文献   

17.
小型压水堆压力容器内部三维流场计算   总被引:2,自引:2,他引:0       下载免费PDF全文
反应堆安全分析过程中,获得反应堆压力容器内部准确的流场至关重要。以小型压水堆为研究对象,运用计算流体力学(CFD)方法对反应堆压力容器内部流场进行计算分析,获得燃料组件流量分配和下封头混合特性。结果表明:两泵高速对称入口条件下,燃料组件流量分配系数最大值为1.032,最小值为0.934,且流量整体分布呈现"中间大、边缘小"的特点;一泵高速非对称入口条件下,下封头流动漩涡增强,燃料组件流量分配的不均性增大;下封头混合特性计算得到堆芯入口冷却剂流量混合因子最小值为0.022,下封头冷却剂混合能力不足。  相似文献   

18.
A three-dimensional CFD analysis has been performed on the flow characteristics in the reactor vessel downcomer during the late reflood phase of a postulated large-break loss-of-coolant accident (LBLOCA), in order to validate the modified linear scaling methodology that was applied in the MIDAS test facility of Korea Atomic Energy Research Institute. The vertical and circumferential velocity similarities are numerically tested for the 1/1 and 1/5 linear scale models for the APR1400 reactor vessel downcomer. The effects of scale on flow patterns, pressure and velocity distributions, and the impinging jet behavior are analyzed with the FLUENT code. In addition, a simplified half cylinder model with a single emergency core cooling (ECC) nozzle is numerically tested to investigate the scale effect on the spreading width and break-up of ECC water film. The qualitative and quantitative results indicate that the 1/5 modified linear scale model of the reactor vessel downcomer would reasonably preserve the hydrodynamic similarity with APR1400.  相似文献   

19.
In the reactor safety analysis process, it is important to obtain an accurate flow field inside the pressure vessel. Taking the small pressurized water reactor as the research object, the computational fluid dynamics (CFD) method was used to calculate and analyze the internal flow field of the reactor pressure vessel, and the fuel assembly flow distribution and the lower head mixing characteristics were obtained. The results show that the maximum flow distribution coefficient of the fuel assembly is 1.032, the minimum value is 0.934, and the overall flow distribution is characterized by “large in the middle and small in the edge” under the high-speed symmetrical inlet condition of the two pumps. The flow vortex of the lower head is enhanced, and the uneven distribution of the flow distribution of the fuel assembly is increased, under the high-speed asymmetric inlet condition of the pump. The minimum mixing factor of the coolant flow at the core inlet was calculated to be 0.022 due to the insufficient mixing characteristics of the lower head.  相似文献   

20.
One of the OECD ROSA project tests, investigating temperature stratification in the cold legs and the downcomer during ECCS water injection under single-phase natural circulation conditions was analysed with the FLUENT code. The guidance given in the “Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications” of the OECD GAMA group was followed. Steady-state calculations were performed with the Standard k-?, the Realizable k-? and the Reynolds Stress Model, the last one being closest to the measured results. The calculations indicate the predominance of buoyancy effects in the cold leg caused by the density difference between cold and hot water, while in the test it seems, as if mixing between the cold plume and hot water would be the prevailing mechanism. It is shown that the temperature distribution in the downcomer is strongly influenced by correct modelling of the cold leg-downcomer connection. A model with an abrupt transition leads to the colder fluid flowing to the core barrel, while in the test it was flowing down along the vessel wall. Modelling the rounded transition of the ROSA facility shifts the cold stream towards the vessel wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号