共查询到20条相似文献,搜索用时 0 毫秒
1.
An improved discriminative common vectors and support vector machine based face recognition approach 总被引:1,自引:0,他引:1
Ying Wen 《Expert systems with applications》2012,39(4):4628-4632
An improved discriminative common vectors and support vector machine based face recognition approach is proposed in this paper. The discriminative common vectors (DCV) algorithm is a recently addressed discriminant method, which shows better face recognition effects than some commonly used linear discriminant algorithms. The DCV is based on a variation of Fisher’s Linear Discriminant Analysis for the small sample size case. However, for multiclass problem, the Fisher criterion is clearly suboptimal. We design an improved discriminative common vector by adjustment for the Fisher criterion that can estimate the within-class and between-class scatter matrices more accurately for classification purposes. Then we employ support vector machine as the classifier due to its higher classification and higher generalization. Testing on two public large face database: ORL and AR database, the experimental results demonstrate that the proposed method is an effective face recognition approach, which outperforms several representative recognition methods. 相似文献
2.
3.
4.
5.
基于支持向量机的传感器非线性动态补偿 总被引:1,自引:0,他引:1
鉴于相同条件下传感器的输出特性本质上服从某一未知分布及统计学习理论中支持向量机方法解决非线性问题的能力,提出了一种通过学习机构造出反映传感器输出特性的回归函数进行动态补偿的方法。该方法无需被补偿传感器结构特性的先验知识,且提高了泛化能力。实验表明:补偿后的传感器具有期望的输出特性。 相似文献
6.
《Expert systems with applications》2014,41(2):588-593
Iris based authentication system is essentially a pattern recognition technique that makes use of iris patterns, which are statistically unique, for the purpose of personal identification. In this study, a novel method for recognition of iris patterns is considered by using a combination of support vector machine and Hamming distance. The zigzag collarette area of the iris is selected for iris feature extraction because it captures the most important areas of iris complex pattern and higher recognition rate is achieved. The proposed approach also used parabola detection and trimmed median filter for the purpose of eyelid and eyelash detection & removal, respectively. The proposed method is computationally effective as well as reliable with a recognition rate of 99.91% and 99.88% on CASIA and Chek image database respectively. 相似文献
7.
将支持向量机(SVM)引入到复杂条件下运动车辆牌照字符的识别中。回顾了车牌识别研究的现状,简要介绍了SVM的基本原理,比较了SVM算法和神经网络算法在车牌字符识别上的优劣;提出了采用基于先验知识的二叉树结构组合多个二值分类支持向量机来解决车牌字符的多类识别问题。在实验中采用了LibSVM训练软件,针对车牌汉字的小字符集进行了仿真,同时与神经网络分类方法进行了比较。实验结果表明该方法的汉字识别率较高,在小字符集车牌汉字识别中具有较强的实用性。 相似文献
8.
9.
针对工业过程中某些重要过程变量难以实现在线检测的问题,提出了一种基于小波和最小二乘支持向量机(LS-SVM)的软测量建模方法.首先通过小波变换把样本数据序列分解为不同频段的子序列,然后对这些子序列分别采用LS-SVM进行建模,最后通过小波重构得到主导变量的估计值.其中采用量子粒子群算法(PSO)来优化选取LS-SVM参数.通过仿真实验验证此方法,实验结果表明所提出的方法具有估计精度高、泛化能力强等优点. 相似文献
10.
论文介绍了支持向量积的工作原理以及其在图像识别中的应用,指出了该方法与常规识别法的优势所在,并在以数字字符的识别为例进行实现,通过对各个字符样本特征提取来识别字符,并在MATLAB下给出识别结果,实验结果表明了该方法识别准确性较高,而且SVM(support vector machine)样本训练的收敛速度比较快。 相似文献
11.
谭建辉 《计算机工程与设计》2012,33(4):1542-1546
为进一步提高红外步态识别精度,构建了一种多分类器融合识别新模型,在根据各单分类器识别输出值构建度量向量的基础上,进行基于粗糙集支持向量机的多分类器融合识别.通过在Matlab7.5平台利用中科院红外步态库进行识别仿真实验,获得识别率和累积匹配分值的实验数据及对比结果.实验结果表明,基于粗糙集支持向量机的多分类器融合识别模型比单分类器在识别率方面有大幅度提高,识别性能理想,识别精度高. 相似文献
12.
为提高尿液细胞进行识别分类的效果,分析和比较了在RGB和HIS两种不同色彩坐标系统下使用支持向量机对尿液细胞进行识别分类的效果,分析和比较了使用色彩特征参数与空间特征参数进行综合识别分类尿液细胞的效果,提出使用网格搜索交叉验证法对支持向量机的参数进行优化.实验结果表明,提出的HSI颜色参数、空间参数、网格搜索交叉验证优化选择参数相结合的方法在尿液细胞识别分类中效果良好. 相似文献
13.
基于支持向量机和小波分析的说话人识别 总被引:2,自引:0,他引:2
为解决说话人识别问题,提出了一种基于支持向量机和小波分析的识别方法以及其框架模型,即将小波分析应用于信号预处理,并以此为基础,利用其奇异点检测原理将语音信号和噪声分离,实现语音增强,最终基于样本进行训练和测试,采用SVM实现说话人的分类识别. 相似文献
14.
15.
By introducing the rough set theory into the support vector machine (SVM), a rough margin based SVM (RMSVM) is proposed to deal with the overfitting problem due to outliers. Similar to the classical SVM, the RMSVM searches for the separating hyper-plane that maximizes the rough margin, defined by the lower and upper margin. In this way, more data points are adaptively considered rather than the few extreme value points used in the classical SVM. In addition, different support vectors may have different effects on the learning of the separating hyper-plane depending on their positions in the rough margin. Points in the lower margin have more effects than those in the boundary of the rough margin. From experimental results on six benchmark datasets, the classification accuracy of this algorithm is improved without additional computational expense compared with the classical ν-SVM. 相似文献
16.
Shih-Yen Lin Ruey-Shiang Guh Yeou-Ren Shiue 《Computers & Industrial Engineering》2011,61(4):1123-1134
The effective recognition of unnatural control chart patterns (CCPs) is a critical issue in statistical process control, as unnatural CCPs can be associated with specific assignable causes adversely affecting the process. Machine learning techniques, such as artificial neural networks (ANNs), have been widely used in the research field of CCP recognition. However, ANN approaches can easily overfit the training data, producing models that can suffer from the difficulty of generalization. This causes a pattern misclassification problem when the training examples contain a high level of background noise (common cause variation). Support vector machines (SVMs) embody the structural risk minimization, which has been shown to be superior to the traditional empirical risk minimization principle employed by ANNs. This research presents a SVM-based CCP recognition model for the on-line real-time recognition of seven typical types of unnatural CCP, assuming that the process observations are AR(1) correlated over time. Empirical comparisons indicate that the proposed SVM-based model achieves better performance in both recognition accuracy and recognition speed than the model based on a learning vector quantization network. Furthermore, the proposed model is more robust toward background noise in the process data than the model based on a back propagation network. These results show the great potential of SVM methods for on-line CCP recognition. 相似文献
17.
18.
为正确选择应用于人脸表情识别的支持向量机相关参数,提高表情识别准确率,提出一种应用于表情识别的基于细菌觅食算法的支持向量机参数选择方法。利用细菌觅食算法,通过模拟细菌觅食行为的趋向性操作、复制操作和迁移操作对应用于表情识别的支持向量机的参数进行寻优,避免寻优陷入局部最优,实现参数优化。实验结果表明,采用该方法能够使人脸表情识别分类结果具有更高的准确率。 相似文献
19.
High-accuracy positioning is not only an essential issue for efficient running of high-speed train (HST), but also an important guarantee for the safe operation of high-speed train. Positioning error is zero when the train is passing through a balise. However, positioning error between adjacent balises is going up as the train is moving away from the previous balise. Although average speed method (ASM) is commonly used to compute the position of train in engineering, its positioning error is somewhat large by analyzing the field data. In this paper, we firstly establish a mathematical model for computing position of HST after analyzing wireless message from the train control system. Then, we propose three position computation models based on least square method (LSM), support vector machine (SVM) and least square support vector machine (LSSVM). Finally, the proposed models are trained and tested by the field data collected in Wuhan-Guangzhou high-speed railway. The results show that: (1) compared with ASM, the three models proposed are capable of reducing positioning error; (2) compared with ASM, the percentage error of LSM model is reduced by 50.2% in training and 53.9% in testing; (3) compared with LSM model, the percentage error of SVM model is further reduced by 38.8% in training and 14.3% in testing; (4) although LSSVM model performs almost the same with SVM model, LSSVM model has advantages over SVM model in terms of running time. We also put forward some online learning methods to update the parameters in the three models and better positioning accuracy is obtained. With the three position computation models we proposed, we can improve the positioning accuracy for HST and potentially reduce the number of balises to achieve the same positioning accuracy. 相似文献
20.
采用支持向量机对嗜热和常温蛋白进行模式识别并和偏最小二乘回归比较。结果表明,当惩罚因子C为1,核函数选取线性函数,不敏感常数epsilon取0.01时,经320组数据训练,支持向量机预测的平均正确率为84.9%,后者为86.8%。经1720组数据训练,支持向量机对嗜热蛋白预测正确率达97.4%,对常温蛋白预测的正确率为84.2%,平均90.8%。建立了一种基于序列的识别嗜热和常温蛋白的新方法。 相似文献