首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wear behaviour of TiN(titanium nitride)-coated Ti and Ti-6AI-4V alloy against UHMW polyethylene was studied in hip simulation test. Ti alloys possess an excellent combination of mechanical properties and biocompatibility, however, they suffer from inadequate wear resistance. Thus, their use as articulating components of total joint replacements requires surface hardening, e.g. by TiN. Thirty-two millimetre diameter cp-Ti and Ti-6AI-4V femoral heads were coated with several micrometre thick TiN layers employing an original PIRAC nitriding method based on interaction of Ti alloy substrate with highly reactive monatomic nitrogen. The heads were tested against UHMWPE cups at 37 degrees C in Ringer's solution or in distilled water. Simulator tests were performed at peak pressures of 1.5 and 2.0 MPa in a constant rotation mode at the frequency of 1.5 Hz. The wear of UHMWPE was estimated by weight loss, and the worn metallic and polyethylene surfaces were examined in SEM. The wear rate of UHMWPE cups articulating against PIRAC coated Ti and Ti-6AI-4V after up to 4 x 10(6) cycles was significantly lower than that of UHMWPE articulating against 316L stainless steel. No delamination of TiN coatings was observed after 4 x 10(6) cycles. These results suggest that TiN PIRAC coating on Ti-6AI-4V heads could minimise the wear of total hip replacements without compromising the mechanical properties of the femoral component.  相似文献   

2.
Fatigue tests with and without fretting against unnitrided fretting pads were conducted on unnitrided and plasma nitrided Ti-6Al-4V samples. Plasma nitrided samples exhibited higher surface hardness, higher surface compressive residual stress, lower surface roughness and reduced friction force compared with the unnitrided specimens. Plasma nitriding enhanced the lives of Ti-6Al-4V specimens under both plain fatigue and fretting fatigue loadings. This was explained in terms of the differences in surface hardness, surface residual stress, surface roughness and friction force between the unnitrided and nitrided samples.  相似文献   

3.
Laser Gas Nitriding of Ti-6Al-4V Part 2: Characteristics of Nitrided Layers   总被引:3,自引:0,他引:3  
The characteristics of laser nitrided layers formed on Ti-6Al-4V are presented in this investigation. It has been determined that titanium nitride (TiN) is formed, which significantly increases the hardness of the nitrided surfaces. The amount of titanium nitride produced depends on the processing parameters such as laser pulse energy and nitrogen concentration. Nitrided layers are much smoother along the laser pass direction than perpendicular to this direction. The shrinkage effect in the laser melt zone produces surface residual tensile stresses in Ti-6Al-4V samples regardless of whether the processing environment is Ar, N2, or a mixture of these gases. Pre-heating or stress relieving after laser nitriding significantly reduces the residual tensile stress level.  相似文献   

4.
Ti and its alloys (Ti-6Al-4V) have been used in different engineering applications due to their several outstanding properties. Nevertheless, their use in practical applications is limited in many cases due to their poor tribological property. Researches are ongoing on surface modification of Ti based materials by different plasma and ion based techniques to overcome this problem. However, the conventional plasma nitriding techniques have several problems such as formation of an arc, increased possibility of surface contamination due to a comparatively higher operating pressure, production of a very thin nitrided layer after a long processing time, etc. In this present work, the possibility of a new low-pressure plasma nitriding process using a Plasma Enhanced Chemical Vapor Deposition (PECVD) based saddle field fast atom beam source on a Ti-6Al-4V alloy sample is investigated. Plasma nitriding was carried out at 900 °C and at a pressure 0.1 Pa for 8 h by using a beam current 0.5 A. Optical Microscopy investigation of the cross-section of the nitrided sample revealed a compound nitrided layer (thickness approximately 16 μm) followed by a diffusion layer. X-Ray Diffraction (XRD) analysis confirmed the presence of a TiN phase in the nitrided layers. A roughly three fold higher hardness value (1578 HV0.015) in the top nitriding layer was observed by Vickers microhardness testing compared to hardness value of untreated sample (568 HV0.015),with a gradually decreasing hardness in the core material. The results show that this is a promising method for low pressure plasma nitriding of Ti alloy within a short processing time compared to the conventional nitriding process.  相似文献   

5.
Laser surface treatment provides excellent wear resistance with good oxidation and corrosion resistance. Laser surface nitriding is one such technique resulting in high surface hardness to a depth of a few microns. This can be carried out in pure nitrogen and dilute nitrogen environments. This paper investigates the effect of laser nitriding on Space Shuttle Main Engine (SSME) Ti-5.0Al-2.5Sn alloy under pure nitrogen environment. The nitriding was carried out using 3 kW CW CO2 laser at different laser powers 900 W, 1.0 kW, and 1.2 kW with scan speeds 0.5 m min-1, 1.0 m min-1 and 1.5 m min-1 respectively. Optical microscopic and Vickers hardness tests were conducted on the test specimen to reveal the effect of laser nitriding in melt zone of laser nitrided trail. The extra high surface hardness of 3785 VHN at 25-50 (m depth was observed using the laser variable 1.0 kW laser power, 1.0 m min-1 speed and 3 mm beam dia. This may be attributed to the TiN dendrite formation. The melt zone of laser nitrided trail at other processing parameters shows fine needlelike structure of alpha prime with larger grain size and alpha in the heat affected zone with smaller grain size, with an average hardness 450 VHN. This present investigation shows that the surface of the nitrided trail is free from any cracks, even under the pure nitrogen atmosphere for all laser processing conditions.  相似文献   

6.
The effect of sputtered Ti-50Al-10Cr and Ti-50Al-20Cr coatings on both isothermal and cyclic oxidation resistance at 800 similar to 900 degreesC and hot corrosion resistance at 850 degreesC of Ti-24Al-14Nb-3V was investigated. Results indicated that Ti-24Al-14Nb-3V alloys exhibited poor oxidation resistance due to the formation of Al2O3+TiO2+AlNbO4 mixed scales in air at 800 similar to 900 degreesC and poor hot corrosion resistance due to the spallation of scales formed in Na2SO4+K2SO4 melts at 850 degreesC. Both Ti-50Al-10Cr and Ti-50Al-20Cr coatings remarkably improved the oxidation and hot corrosion resistance of Ti-24Al-14Nb-3V alloy.  相似文献   

7.
Ti-6Al-4V, that was explosively welded to a 304 stainless steel plate, was ion nitrided in a d.c. plasma. An effective nitriding was achieved due to the high dislocation density and vacancy concentration that emaneted from the shock wave exposure of explosive welding which, in turn, accelerated diffusion of nitrogen into the titanium matrix. Processed Ti-6AI-4V developed a surface layer of TiN () followed by a Ti2N () and interstitial nitrogen containing diffusion layer of -titanium. The growth rate of compound layer ( + ) and case depth were found to be controlled by the diffusion of nitrogen. Depending on the temperature of ion nitriding, high Knoop hardness values, between 800 and 2520, were obtained and these values show two to sixfold increase in the hardness when compared with unprocessed samples. XRD results showed VN formation also, together with TiN and Ti2N nitrides and a preferred TiN growth in (002) orientation. Interfaces between Ti-6Al-4V and 304 stainless steel showed higher hardnesses as was seen following explosive welding than associated cores and a small amount of recrystallization was observed in the Ti-6Al-4V layer at the higher temperature processing. Nitriding of clad-Ti-6Al-4V thus provides an excellent opportunity of cladding surfaces with titanium alloys, in advanced structural applications without the expense of their monolithic counterparts.  相似文献   

8.
为探索碳离子注入Ti-6Al-4V合金在人工模拟体液Hank's溶液中的性能,采用电化学方法、扫描电子显微镜和X射线衍射对其缝隙试样在人工模拟体液Hank's溶液中的电化学行为进行了研究.结果表明:碳离子注入后,Ti-6Al-4V合金缝隙试样的腐蚀电位升高、电荷转移电阻增大,阳极极极化电流密度降低,改善了电化学性能;碳离子注入后,Ti-6Al-4V合金表面形成主要由TiC组成的无序层膜,该膜层阻滞了合金元素的溶解,提高了合金的耐缝隙腐蚀性能.  相似文献   

9.
Titanium and its alloys are known for their high specific strength as well as fatigue and corrosion resistance. However, they suffer from poor wear and friction resistance, limiting their use in tribological applications. Nitriding of these materials may be carried out favourably to harden them and thus to improve both wear and friction resistance. The laser nitriding process involves using the intense energy of the laser to melt the surface in a nitrogen comprising atmosphere. This results in creation of a very hard layer consisting of dendritic structures of nitride. But the non-uniformity of the melt pool and cracks in the nitrided layers have been generally observed. Our study deals with the results of Ti-6Al-4V laser surface nitriding and with the effects of a sample preheating on the cracks generation.  相似文献   

10.
Abstract— The solute-rich beta titanium alloy Ti-3Al-8V-6Cr-4Mo-4Zr was subjected to 1500 bar nitrogen pressure at elevated temperatures (500–920°C), leading to a diffusion layer with a high surface hardness. Microstructural, crystallographic and compositional analyses indicate that TiN (δ) and Ti2N (ε) are formed at temperatures exceeding 815°C. The increased concentration of nitrogen, which is a potent α-stabilizer in titanium, also causes α-Ti to form near the surface. The nitriding treatment does not significantly alter the tensile properties or fatigue limit in solution heat treated material. A subsequent ageing treatment of 72 h at 440°C and 16 h at 500°C reduces toughness significantly, allowing cracks induced by nitriding to propagate more easily into the bulk. Tensile ductility and fatigue performance of aged nitrided Ti-3Al-8V-6Cr—4Mo-4Zr are thus significantly lower than in the untreated reference condition.  相似文献   

11.
Carbon nitride (CNX) films (with N/C ratio of 0.5) were deposited on both untreated and plasma nitrided Ti-6Al-4V substrates by D.C. magnetron sputtering using a graphite target in nitrogen plasma. TEM and XPS analysis revealed the formation of both amorphous CNX structure and crystalline -C3N4 phases in the deposited coatings. Nano-indentation tests showed that the film hardness was about 18.36 GPa. Both the scratch tests and indentation tests showed that compared with CNX film deposited directly on Ti-6Al-4V, the load bearing capacity of CNX film deposited on plasma nitrided Ti-6Al-4V was improved dramatically. Ball-on-disk wear tests under both dry sliding and lubricated conditions (with simulated body fluids) were performed to evaluate the friction and wear characteristics of the deposited coatings. Results showed that under both dry and lubricated conditions, the duplex treated system (i.e., with CNX film deposited on plasma nitrided Ti-6Al-4V substrate) was more effective in maintaining a favorable low and stable coefficient of friction and improving wear resistance than both individual plasma nitriding and CNX films on Ti-6Al-4V substrate. Under dry sliding conditions, the generated wear debris of spalled films were accumulated on the wear track, mechanically alloyed and graphitized, thus significantly reducing the coefficient of friction and preventing wear of the substrate. However, under lubricated conditions, due to the flowing of the fluids, the lubricating wear debris was taken away by the fluids, and therefore, the direct contact of two original surfaces resulted in high coefficient of friction and extensive abrasive wear of the substrate for CNX films deposited on Ti-6Al-4V substrate. Also when there was some small-area spallation of CNX films, the fluids could seep into the interface between the film and substrate, thus degrading the interfacial adhesion and resulting in a large area spallation.  相似文献   

12.
采用等离子渗氮技术提升TC4钛合金的耐磨性并探究最优渗氮温度。利用LDM 1-100型等离子渗氮设备,在650,700,750,800,850℃和900℃温度下对TC4钛合金进行渗氮处理,保温时间均为10 h。利用光学显微镜、扫描电子显微镜、白光三维形貌仪、X射线衍射仪和显微硬度计分别对不同温度渗氮试样的微观组织结构、表面形貌、表面粗糙度、相结构和硬度进行表征。利用CETR UMT-3型多功能摩擦磨损试验机测试等离子渗氮后TC4钛合金的摩擦学性能。结果表明:TC4钛合金表面显微硬度和粗糙度随温度升高而增大,在900℃渗氮后TC4钛合金表面显微硬度达到了1318HV 0.05,约为基体(360HV 0.05)的4倍。硬度的升高是由于渗氮后试样表面形成了硬质氮化物相(TiN和Ti2N相),且随着渗氮温度升高氮化物的含量增加。相较于低温渗氮(低于750℃)的试样,850℃和900℃渗氮试样的承载能力显著提升。与原始TC4试样相比,渗氮处理后试样的磨损体积显著降低。当渗氮温度为850℃时,试样磨损体积为未处理试样磨损体积的1.2%(1 N),3.0%(3 N)和62.2%(5 N),试样的耐磨性提升更为显著。  相似文献   

13.
In this study, microstructural and mechanical properties of Ti-6Al-4V alloy, before and after the SMA treatment (SMAT) as well as the duplex SMAT/Nitriding process at different treatment conditions, were investigated in order to deepen the knowledge of these properties for biomedical devices. For that purpose, tribological (wear resistance, coefficient of friction) and mechanical (Vickers microhardness) tests were performed. To carry out the microstructural and surface topographical characterization of the samples, the scanning electron microscopy (SEM) and the 3D-SEM reconstruction from stereoscopic images have been used. By means of profiles deduced from the 3D images, the surface roughness has been calculated. The obtained results allowed to find an interesting SMAT condition which, followed by nitriding at low temperature, can greatly improve tribological and mechanical properties of Ti-6Al-4V alloy. It was also shown from SEM characterization and the original method of 3D-SEM reconstruction, that SMAT can reduce the machined grooves and consequently the roughness of the samples decreases. Moreover, we demonstrated, for the first time, that instead of usual etching method, the ionic polishing allowed to reveal the grains, the grain boundaries and the twins as well as the surface nanocrystalline layer generated by SMAT. Thus, the thickness of the SMATed layer decreases with the nitriding temperature, whereas the surface grain size increases.  相似文献   

14.
A porous-coated Ti-6Al-4V implant was fabricated by electrical resistance sintering, using 480 F capacitance and 1.5 kJ input energy. X-ray photoelectron spectroscopy (XPS) was used to study the surface characteristics of the implant material before and after sintering. There were substantial differences in the content of O and N between as-received atomized Ti-6Al-4V powders and the sintered prototype implant, which indicates that electrical resistance sintering alters the surface composition of Ti-6Al-4V. Whereas the surface of atomized Ti-6Al-4V powders was primarily TiO2, the surface of the implant consisted of a complex of titanium oxides as well as small amounts of titanium carbide and nitride. It is proposed that the electrical resistance sintering process consists of five stages: stage I – electronic breakdown of oxide film and heat accumulation at the metal-oxide interface; stage II – physical breakdown of oxide film; stage III – neck formation and neck growth; stage IV – oxidation, nitriding, and carburizing; and stage V – heat dissipation. The fourth stage, during which the alloy repassivates, is responsible for the altered surface composition of the implant.  相似文献   

15.
Laser gas nitriding of Ti-6A1-4V has been investigated with both CO2 and Nd:YAG lasers. Results indicate that Nd:YAG laser in pulse mode provides a better surface finish and a lower cracking severity than CO2 laser. A crack-free nitrided layer has been obtained by optimizing the processing parameters. Titanium nitride (TiN) significantly increases the hardness of the nitrided surfaces. The amount of titanium nitride produced depends on the processing parameters, such as laser pulse energy and nitrogen concentration. With optimized parameters, the nitrided surface is somewhat rougher than the polished base metal but much smoother than the shot peened surface. The shrinkage effect in the laser melt zone produces surface residual tensile stresses regardless of the processing environment. Preheating or stress relieving after laser nitriding can significantly reduce the residual tensile stress level.  相似文献   

16.
系统阐述了在钛合金(Ti-6Al-4V)表面等离子喷涂羟基磷灰石(HA)涂层的研究进展.描述了等离子喷涂制备HA涂层的工艺过程、微观形貌和化学组成.综述几种综合性能较高的复合型涂层:HA/BG(生物活性玻璃)复合涂层,HA/ZrO2复合增强型涂层,HA/Ti涂层,HA/Ti-6Al-4V梯度涂层;并对HA涂层发展趋势进行了展望.  相似文献   

17.
Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4 V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4 V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4 V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4 V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4 V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4 V alloy as the material base for mini-implants.  相似文献   

18.
The in situ tensile straining of cross-sectional specimens inside a TEM is intrinsically very difficult to perform despite its obvious interest to study interfaces of surface treated materials. We have combined a FIB-based method to produce H-bar specimens of a nitrided Ti-6Al-4V alloy and in situ TEM straining stage, to successfully study the plastic deformation mechanisms that are activated close to the nitrided surface in the Ti-based alloy.  相似文献   

19.
邓竹君  周清  陈明和  陈文杰 《材料导报》2011,(3):116-120,135
综述了目前国际上应用于医用生物材料的等通道挤压(Equal-channel angular pressure,ECAP)处理工业纯钛和钛合金的研究进展,介绍了等通道挤压技术的最新进展,ECAP处理工业纯钛的微观组织演变,ECAP处理后Ti的强度、抗疲劳性、耐腐蚀性和生物活性的改善以及ECAP处理Ti-6Al-4V的超塑性和超塑变形后的微观组织,最后展望了未来的研究方向。  相似文献   

20.
The Ti-30Zr-5Al-3V titanium alloy has an ultra-low Young's modulus. So, it promises great application potential as a hard-tissue implanted biomaterial. However, its surface performances need to be improved before clinical applications. In this work, a carbonated hydroxyapatite film is deposited on the surface of Ti-30Zr-5Al-3V bio-alloy using electrochemical methods. Microstructure, film-substrate adhesion, and electrochemical corrosion behavior of carbonated hydroxyapatite deposited specimens in Ringer's solution are investigated. A homogeneous, dense, and fully covered carbonated hydroxyapatite film forms on the surface after depositing at 3 V, 90 °C for 120 minutes. The formation mechanism of the carbonated hydroxyapatite film on the micro-nano structure surface is revealed. The corrosion performance of carbonated hydroxyapatite deposited specimens in Ringer's solution is evaluated by using potentiodynamic polarization curves. The carbonated hydroxyapatite deposition obviously enhanced the corrosion resistance of the Ti-30Zr-5Al-3V bio-alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号