首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Disordered crystallization and poor phase stability of mixed halide perovskite films are still the main factors that compromise the performance of inverted wide bandgap (WBG; 1.77 eV) perovskite solar cells (PSCs). Great difficulties are evidenced due to the very different crystallization rates between I- and Br-based perovskite components through DMSO-alone assisted anti-solvent process. Here, a zwitterionic additive strategy is reported for finely regulating the crystal growth of Cs0.2FA0.8Pb(I0.6Br0.4)3, thereby obtaining high-performance PSCs. The aminoethanesulfonic acid (AESA) is introduced to form hydrogen bonds and strong Pb O bonds with perovskite precursors, realizing the complete coordination with both the organic (FAI) and inorganic (CsI, PbI2, PbBr2) components, balancing their complexation effects, and realizing AESA-guided fast nucleation and retarded crystallization processes. This treatment substantially promotes homogeneous crystal growth of I- and Br-based perovskite components. Besides, this uniformly distributed AESA passivates the defects and inhibits the photo-induced halide segregation effectively. This strategy generates a record efficiency of 19.66%, with a Voc of 1.25 V and FF of 83.7% for an MA-free WBG p-i-n device at 1.77 eV. The unencapsulated devices display impressive humidity stability at 30 ± 5% RH for 1000 h and much improved continuous operation stability at MPP for 300 h.  相似文献   

3.
4.
5.
Organic–inorganic hybrid perovskites have attracted considerable attention due to their superior optoelectronic properties. Traditional one-step solution-processed perovskites often suffer from defects-induced nonradiative recombination, which significantly hinders the improvement of device performance. Herein, treatment with green antisolvents for achieving high-quality perovskite films is reported. Compared to defects-filled ones, perovskite films by antisolvent treatment using methylamine bromide (MABr) in ethanol (MABr-Eth) not only enhances the resultant perovskite crystallinity with large grain size, but also passivates the surface defects. In this case, the engineering of MABr-Eth-treated perovskites suppressing defects-induced nonradiative recombination in perovskite solar cells (PSCs) is demonstrated. As a result, the fabricated inverted planar heterojunction device of ITO/PTAA/Cs0.15FA0.85PbI3/PC61BM/Phen-NADPO/Ag exhibits the best power conversion efficiency of 21.53%. Furthermore, the corresponding PSCs possess a better storage and light-soaking stability.  相似文献   

6.
Wide-bandgap perovskite solar cells (PSCs) are attracting increasing attention because they play an irreplaceable role in tandem solar cells. Nevertheless, wide-bandgap PSCs suffer large open-circuit voltage (VOC) loss and instability due to photoinduced halide segregation, significantly limiting their application. Herein, a bile salt (sodium glycochenodeoxycholate, GCDC, a natural product), is used to construct an ultrathin self-assembled ionic insulating layer firmly coating the perovskite film, which suppresses halide phase separation, reduces VOC loss, and improves device stability. As a result, 1.68 eV wide-bandgap devices with an inverted structure deliver a VOC of 1.20 V with an efficiency of 20.38%. The unencapsulated GCDC-treated devices are considerably more stable than the control devices, retaining 92% of their initial efficiency after 1392 h storage under ambient conditions and retaining 93% after heating at 65 °C for 1128 h in an N2 atmosphere. This strategy of mitigating ion migration via anchoring a nonconductive layer provides a simple approach to achieving efficient and stable wide-bandgap PSCs.  相似文献   

7.
The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs.  相似文献   

8.
9.
10.
11.
Two-step-fabricated FAPbI3-based perovskites have attracted increasing attention because of their excellent film quality and reproducibility. However, the underlying film formation mechanism remains mysterious. Here, the crystallization kinetics of a benchmark FAPbI3-based perovskite film with sequential A-site doping of Cs+ and GA+ is revealed by in situ X-ray scattering and first-principles calculations. Incorporating Cs+ in the first step induces an alternative pathway from δ-CsPbI3 to perovskite α-phase, which is energetically more favorable than the conventional pathways from PbI2. However, pinholes are formed due to the nonuniform nucleation with sparse δ-CsPbI3 crystals. Fortunately, incorporating GA+ in the second step can not only promote the phase transition from δ-CsPbI3 to the perovskite α-phase, but also eliminate pinholes via Ostwald ripening and enhanced grain boundary migration, thus boosting efficiencies of perovskite solar cells over 23%. This work demonstrates the unprecedented advantage of the two-step process over the one-step process, allowing a precise control of the perovskite crystallization kinetics by decoupling the crystal nucleation and growth process.  相似文献   

12.
13.
This work reports on the preparation of semitransparent perovskite solar cells. The cells transparency is achieved through a unique wet deposition technique that creates perovskite grids with various dimensions. The perovskite grid is deposited on a mesoporous TiO2 layer, followed by hole transport material deposition and evaporation of a semitransparent gold film. Control of the transparency of the solar cells is achieved by changing the perovskite solution concentration and the mesh openings. The semitransparent cells demonstrate 20–70% transparency with a power conversion efficiency of 5% at 20% transparency. This is the first demonstration of the possibility to create a controlled perovskite pattern using a direct mesh‐assisted assembly deposition method for fabrication of a semitransparent perovskite‐based solar cell.  相似文献   

14.
Organic bulk heterojunction solar cells (OSCs) and hybrid halide perovskite solar cells (PSCs) are two promising photovoltaic techniques for next‐generation energy conversion devices. The rapid increase in the power conversion efficiency (PCE) in OSCs and PSCs has profited from synergetic progresses in rational material synthesis for photoactive layers, device processing, and interface engineering. Interface properties in these two types of devices play a critical role in dictating the processes of charge extraction, surface trap passivation, and interfacial recombination. Therefore, there have been great efforts directed to improving the solar cell performance and device stability in terms of interface modification. Here, recent progress in interfacial doping with biopolymers and ionic salts to modulate the cathode interface properties in OSCs is reviewed. For the anode interface modification, recent strategies of improving the surface properties in widely used PEDOT:PSS for narrowband OSCs or replacing it by novel organic conjugated materials will be touched upon. Several recent approaches are also in focus to deal with interfacial traps and surface passivation in emerging PSCs. Finally, the current challenges and possible directions for the efforts toward further boosts of PCEs and stability via interface engineering are discussed.  相似文献   

15.
何云龙  沈沪江  王炜  袁慧慧 《材料导报》2018,32(21):3677-3688
柔性太阳能电池具有轻便、可弯曲的优点,可用于可穿戴设备等器件的即时充电,具有广阔的应用前景,受到持续广泛的关注。柔性太阳能电池制备中的关键在于基材以及与之相关的电极材料的制备。本文综述了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池近几年的发展情况,着重介绍了柔性染料敏化太阳能电池光阳极、对电极以及柔性钙钛矿太阳能电池的底电极和电子传输层。结果发现高温烧结目前仍是制备高效染料敏化太阳能电池光阳极不可避免的方法,而对电极则不受这一限制并且已经有多种材料的效率超过了高温烧结的铂。柔性钙钛矿太阳能电池的研究重点是用其他材料代替底电极中柔性较差的ITO以及高温烧结的电子传输材料TiO2,并且都取得显著成效。在此基础上,展望了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池未来的发展方向。  相似文献   

16.
Current‐density–voltage (JV) hysteresis in perovskite solar cells (PSCs) is a critical issue because it is related to power conversion efficiency and stability. Although parameters affecting the hysteresis have been already reported and reviewed, little investigation is reported on scan‐direction‐dependent JV curves depending on perovskite composition. This review investigates JV hysteric behaviors depending on perovskite composition in normal mesoscopic and planar structure. In addition, methodologies toward hysteresis‐free PSCs are proposed. There is a specific trend in hysteresis in terms of JV curve shape depending on composition. Ion migration combined with nonradiative recombination near interfaces plays a critical role in generating hysteresis. Interfacial engineering is found to be an effective method to reduce the hysteresis; however, bulk defect engineering is the most promising method to remove the hysteresis. Among the studied methods, KI doping is proved to be a universal approach toward hysteresis‐free PSCs regardless of perovskite composition. It is proposed from the current studies that engineering of perovskite film near the electron transporting layer (ETL) and the hole transporting layer (HTL) is of vital importance for achieving hysteresis‐free PSCs and extremely high efficiency.  相似文献   

17.
18.
Low temperature solution processed planar‐structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm2) and 20.1% in large size (1 cm2) with moderate residual PbI2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar‐structure perovskite solar cells, showing the planar‐structure perovskite solar cells are very promising.  相似文献   

19.
20.
Perovskite solar cells (PSCs) have developed rapidly over the past few years, and the power conversion efficiency of PSCs has exceeded 20%. Such high performance can be attributed to the unique properties of perovskite materials, such as high absorption over the visible range and long diffusion length. Due to the different diffusion lengths of holes and electrons, electron transporting materials (ETMs) used in PSCs play a critical role in PSCs performance. As an alternative to TiO2 ETM, ZnO materials have similar physical properties to TiO2 but with much higher electron mobility. In addition, there are many simple and facile methods to fabricate ZnO nanomaterials with low cost and energy consumption. This review focuses on recent developments in the use of ZnO ETM for PSCs. The fabrication methods of ZnO materials are briefly introduced. The influence of different ZnO ETMs on performance of PSCs is then reviewed. The limitations of ZnO ETM‐based PSCs and some solutions to these challenges are also discussed. The review provides a systematic and comprehensive understanding of the influence of different ZnO ETMs on PSCs performance and potentially motivates further development of PSCs by extending the knowledge of ZnO‐based PSCs to TiO2‐based PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号