首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wide-bandgap perovskite solar cells (PSCs) are attracting increasing attention because they play an irreplaceable role in tandem solar cells. Nevertheless, wide-bandgap PSCs suffer large open-circuit voltage (VOC) loss and instability due to photoinduced halide segregation, significantly limiting their application. Herein, a bile salt (sodium glycochenodeoxycholate, GCDC, a natural product), is used to construct an ultrathin self-assembled ionic insulating layer firmly coating the perovskite film, which suppresses halide phase separation, reduces VOC loss, and improves device stability. As a result, 1.68 eV wide-bandgap devices with an inverted structure deliver a VOC of 1.20 V with an efficiency of 20.38%. The unencapsulated GCDC-treated devices are considerably more stable than the control devices, retaining 92% of their initial efficiency after 1392 h storage under ambient conditions and retaining 93% after heating at 65 °C for 1128 h in an N2 atmosphere. This strategy of mitigating ion migration via anchoring a nonconductive layer provides a simple approach to achieving efficient and stable wide-bandgap PSCs.  相似文献   

2.
Disordered crystallization and poor phase stability of mixed halide perovskite films are still the main factors that compromise the performance of inverted wide bandgap (WBG; 1.77 eV) perovskite solar cells (PSCs). Great difficulties are evidenced due to the very different crystallization rates between I- and Br-based perovskite components through DMSO-alone assisted anti-solvent process. Here, a zwitterionic additive strategy is reported for finely regulating the crystal growth of Cs0.2FA0.8Pb(I0.6Br0.4)3, thereby obtaining high-performance PSCs. The aminoethanesulfonic acid (AESA) is introduced to form hydrogen bonds and strong Pb O bonds with perovskite precursors, realizing the complete coordination with both the organic (FAI) and inorganic (CsI, PbI2, PbBr2) components, balancing their complexation effects, and realizing AESA-guided fast nucleation and retarded crystallization processes. This treatment substantially promotes homogeneous crystal growth of I- and Br-based perovskite components. Besides, this uniformly distributed AESA passivates the defects and inhibits the photo-induced halide segregation effectively. This strategy generates a record efficiency of 19.66%, with a Voc of 1.25 V and FF of 83.7% for an MA-free WBG p-i-n device at 1.77 eV. The unencapsulated devices display impressive humidity stability at 30 ± 5% RH for 1000 h and much improved continuous operation stability at MPP for 300 h.  相似文献   

3.
Surface defects-mediated nonradiative recombination plays a critical role in the performance and stability of perovskite solar cells (PSCs) and surface post-treatment is widely used for efficient PSCs. However, the commonly used surface passivation strategies are one-off and the passivation defect ability is limited, which can only solve part of the defects in the topmost surface area. Here, a secondary anti-solvent strategy is proposed to further reduce surface defects based on conventional surface passivation for the first time. Based on this, the crystallization quality of 2D Dion–Jacobson perovskite is enhanced and the surface defects density is further reduced by nearly two orders. In addition, a gradient structure of perovskite with n = 2 phases located at the top of the film and 3D-like phases located at the bottom of the film can also be obtained. The modulated perovskite film boosts the efficiency of 2D perovskites (n = 5) up to 19.55%. This strategy is also very useful in other anti-solvent processed perovskite dipping systems, which paves a promising avenue for minimizing surface defects toward highly efficient perovskite devices.  相似文献   

4.
Both the uncoordinated Pb2+ and excess PbI2 in perovskite film will create defects and perturb carrier collection, thus leading to the open-circuit voltage (VOC) loss and inducing rapid performance degradation of perovskite solar cells (PSCs). Herein, an additive of 3-aminothiophene-2-carboxamide (3-AzTca) that contains amide and amino and features a large molecular size is introduced to improve the quality of perovskite film. The interplay of size effect and adequate bonding strength between 3-AzTca and uncoordinated Pb2+ regulates the mineralization of PbI2 and generates low-dimensional PbI2 phase, thereby boosting the crystallization of perovskite. The decreased defect states result in suppressed nonradiative recombination and reduced VOC loss. The power conversion efficiency (PCE) of modified PSC is improved to 22.79% with a high VOC of 1.22 V. Moreover, the decomposition of PbI2 and perovskite films is also retarded, yielding enhanced device stability. This study provides an effective method to minimize the concentration of uncoordinated Pb2+ and improve the PCE and stability of PSCs.  相似文献   

5.
1.5–1.6 eV bandgap Pb-based perovskite solar cells (PSCs) with 30–31% theoretical efficiency limit by the Shockley–Queisser model achieve 21–24% power conversion efficiencies (PCEs). However, the best PCEs of reported ideal-bandgap (1.3–1.4 eV) Sn–Pb PSCs with a higher 33% theoretical efficiency limit are <18%, mainly because of their large open-circuit voltage (Voc) deficits (>0.4 V). Herein, it is found that the addition of guanidinium bromide (GABr) can significantly improve the structural and photoelectric characteristics of ideal-bandgap (≈1.34 eV) Sn–Pb perovskite films. GABr introduced in the perovskite films can efficiently reduce the high defect density caused by Sn2+ oxidation in the perovskite, which is favorable for facilitating hole transport, decreasing charge-carrier recombination, and reducing the Voc deficit. Therefore, the best PCE of 20.63% with a certificated efficiency of 19.8% is achieved in 1.35 eV PSCs, along with a record small Voc deficit of 0.33 V, which is the highest PCE among all values reported to date for ideal-bandgap Sn–Pb PSCs. Moreover, the GABr-modified PSCs exhibit significantly improved environmental and thermal stability. This work represents a noteworthy step toward the fabrication of efficient and stable ideal-bandgap PSCs.  相似文献   

6.
The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs.  相似文献   

7.
Cesium‐based inorganic perovskite solar cells (PSCs) are promising due to their potential for improving device stability. However, the power conversion efficiency of the inorganic PSCs is still low compared with the hybrid PSCs due to the large open‐circuit voltage (VOC) loss possibly caused by charge recombination. The use of an insulated shunt‐blocking layer lithium fluoride on electron transport layer SnO2 for better energy level alignment with the conduction band minimum of the CsPbI3‐xBrx and also for interface defect passivation is reported. In addition, by incorporating lead chloride in CsPbI3‐xBrx precursor, the perovskite film crystallinity is significantly enhanced and the charge recombination in perovksite is suppressed. As a result, optimized CsPbI3‐xBrx PSCs with a band gap of 1.77 eV exhibit excellent performance with the best VOC as high as 1.25 V and an efficiency of 18.64%. Meanwhile, a high photostability with a less than 6% efficiency drop is achieved for CsPbI3‐xBrx PSCs under continuous 1 sun equivalent illumination over 1000 h.  相似文献   

8.
Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.  相似文献   

9.
An electron-transport layer (ETL) with appropriate energy alignment and enhanced charge transfer is critical for perovskite solar cells (PSCs). However, interfacial energy level mismatch limits the electrical performance of PSCs, particularly the open-circuit voltage (VOC). Herein, a simple low-temperature-processed In2O3/SnO2 bilayer ETL is developed and used for fabricating a new PSC device. The presence of In2O3 results in uniform, compact, and low-trap-density perovskite films. Moreover, the conduction band of In2O3 is shallower than that of Sn-doped In2O3 (ITO), enhancing the charge transfer from perovskite to ETL, thus minimizing VOC loss at the perovskite and ETL interface. A planar PSC with a power conversion efficiency of 23.24% (certified efficiency of 22.54%) is obtained. A high VOC of 1.17 V is achieved with the potential loss at only 0.36 V. In contrast, devices based on single SnO2 layers achieve 21.42% efficiency with a VOC of 1.13 V. In addition, the new device maintains 97.5% initial efficiency after 80 d in N2 without encapsulation and retains 91% of its initial efficiency after 180 h under 1 sun continuous illumination. The results demonstrate and pave the way for the development of efficient photovoltaic devices.  相似文献   

10.
Although inorganic perovskite solar cells (PSCs) are promising in thermal stability, their large open-circuit voltage (VOC) deficit and difficulty in large-area preparation still limit their development toward commercialization. The present work tailors C60 via a codoping strategy to construct an efficient electron-transporting layer (ETL), leading to a significant improvement in VOC of the inverted inorganic CsPbI2Br PSC. Specifically, tris(pentafluorophenyl)borane (TPFPB) is introduced as a dopant to lower the lowest unoccupied molecular orbital (LUMO) level of the C60 layer by forming a Lewis acidic adduct. The enlarged free energy difference provides a favorable enhancement in electron injection and thereby reduces charge recombination. Subsequently, a nonhygroscopic lithium salt (LiClO4) is added to increase electron mobility and conductivity of the film, leading to a reduction in the device hysteresis and facilitating the fabrication of a large-area device. Finally, the as-optimized inorganic CsPbI2Br PSCs gain a champion power conversion efficiency (PCE) of 15.19%, with a stabilized power output (SPO) of 14.21% (0.09 cm2). More importantly, this work also demonstrates a record PCE of 14.44% for large-area inorganic CsPbI2Br PSCs (1.0 cm2) and reports the first inorganic perovskite solar module with the excellent efficiency exceeding 12% (10.92 cm2) by a self-developed quasi-curved heating method.  相似文献   

11.
All-inorganic perovskite CsPbI3 contains no volatile organic components and is a thermally stable photoactive material for wide-bandgap perovskite solar cells (PSCs); however, CsPbI3 readily undergoes undesirable phase transitions due to the hygroscopic nature of the ionic dopants used in commonly used hole transport materials. In the current study, the popular donor material PM6 in organic solar cells is used as a hole transport layer (HTL). The benzodithiophene-based backbone-conjugated polymer requires no dopant and leads to a higher power conversion efficiency (PCE) than 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-OMeTAD). Moreover, PM6 also shows priorities in hole mobility, hydrophobicity, cascade energy level alignment, and even defect passivation of perovskite films. With PM6 as the dopant-free HTL, the PSCs achieve a champion PCE of 18.27% with a competitive fill factor of 82.8%. Notably, the present PCE is based on the dopant-free HTL in CsPbI3 PSCs reported thus far. The PSCs with PM6 as the HTL retain over 90% of the initial PCE stored in a glovebox filled with N2 for 3000 h. In contrast, the PSCs with Spiro-OMeTAD as the HTL maintain ≈80% of the initial PCE under the same conditions.  相似文献   

12.
Defects of perovskite (PVK) films are one of the main obstacles to achieving high-performance perovskite solar cells (PSCs). Here, the authors fabricated highly efficient and stable PSCs by introducing prolinamide (ProA) into the PbI2 precursor solution, which improves the performance of PSCs by the competitive crystallization and efficient defect passivation of perovskite. The theoretical and experimental results indicate that ProA forms an adduct with PbI2, competes with free I to coordinate with Pb2+, leads to the increase of the energy barrier of crystallization, and slows down the crystallization rate. Furthermore, the dual-site synergistic passivation of ProA is revealed by density functional theory (DFT) calculations and experimental results. ProA effectively reduces non-radiative recombination in the resultant films to improve the photovoltaic performance of PSCs. Notably, ProA-assisted PSCs achieve 24.61% power conversion efficiency (PCE) for the champion device and the stability of PSCs devices under ambient and thermal environments is improved.  相似文献   

13.
Mixed lead-tin (Pb Sn) perovskite solar cells (PSCs) possess low toxicity and adjustable bandgap for both single-junction and all-perovskite tandem solar cells. However, the performance of mixed Pb Sn PSCs still lags behind the theoretical efficiency. The uncontrollable crystallization and the resulting structural defect are important reasons. Here, the bidirectional anions gathering strategy (BAG) is reported by using Methylammonium acetate (MAAc) and Methylammonium thiocyanate (MASCN) as perovskite bulk additives, which Ac escapes from the perovskite film top surface while SCN gathers at the perovskite film bottom in the crystallization process. After the optoelectronic techniques, the bidirectional anions movement caused by the top-down gradient crystallization is demonstrated. The layer-by-layer crystallization can collect anions in the next layer and gather at the broader, enabling a controllable crystallization process, thus getting a high-quality perovskite film with better phase crystallinity and lower defect concentration. As a result, PSCs treated by the BAG strategy exhibit outstanding photovoltaic and electroluminescent performance with a champion efficiency of 22.14%. Additionally, it demonstrates excellent long-term stability, which retains ≈92.8% of its initial efficiency after 4000 h aging test in the N2 glove box.  相似文献   

14.
Current‐density–voltage (JV) hysteresis in perovskite solar cells (PSCs) is a critical issue because it is related to power conversion efficiency and stability. Although parameters affecting the hysteresis have been already reported and reviewed, little investigation is reported on scan‐direction‐dependent JV curves depending on perovskite composition. This review investigates JV hysteric behaviors depending on perovskite composition in normal mesoscopic and planar structure. In addition, methodologies toward hysteresis‐free PSCs are proposed. There is a specific trend in hysteresis in terms of JV curve shape depending on composition. Ion migration combined with nonradiative recombination near interfaces plays a critical role in generating hysteresis. Interfacial engineering is found to be an effective method to reduce the hysteresis; however, bulk defect engineering is the most promising method to remove the hysteresis. Among the studied methods, KI doping is proved to be a universal approach toward hysteresis‐free PSCs regardless of perovskite composition. It is proposed from the current studies that engineering of perovskite film near the electron transporting layer (ETL) and the hole transporting layer (HTL) is of vital importance for achieving hysteresis‐free PSCs and extremely high efficiency.  相似文献   

15.
Perovskite solar cells (PSCs) have emerged as one of the most promising and competitive photovoltaic technologies, and doctor-blading is a facile and robust deposition technique to efficiently fabricate PSCs in large scale, especially matching with roll-to-roll process. Herein, it demonstrates the encouraging results of one-step, antisolvent-free doctor-bladed methylammonium lead iodide (CH3NH3PbI3, MAPbI3) PSCs under a wide range of humidity from 45% to 82%. A synergy strategy of ionic-liquid methylammonium acetate (MAAc) and molecular phenylurea additives is developed to modulate the morphology and crystallization process of MAPbI3 perovskite film, leading to high-quality MAPbI3 perovskite film with large-size crystal, low defect density, and ultrasmooth surface. Impressive power conversion efficiency (PCE) of 20.34% is achieved for doctor-bladed PSCs under the humidity over 80% with a device structure of ITO/SnO2/MAPbI3/Spiro-OMeTAD/Ag. It is the highest PCEs for one-step solution-processed MAPbI3 PSCs without antisolvent assistance. The research provides a facile and robust large-scale deposition technique to fabricate highly efficient and stable PSCs under a wide range of humidity, even with the humidity over 80%.  相似文献   

16.
All-inorganic CsPbI3 perovskite solar cells (PSCs) have been extensively studied due to their high thermal stability and unprecedented rise in power conversion efficiency (PCE). Recently, the champion PCE of CsPbI3 PSCs has reached up to 21%; however, it is still much lower than that of organic–inorganic hybrid PSCs. Interface modification to passivate surface defects and minimize charge recombination and trapping is important to further improve the efficiency of CsPbI3 PSCs. Herein, a new zwitterion ion is deposited at the interface between electron transporting layer (ETL) and perovskite layer to passivate the defects therein. The zwitterion ions can not only passivate oxygen vacancy (VO) and iodine vacancy (VI) defects, but also improve the band alignment at the ETL-perovskite interface. After the interface treatment, the PCE of CsPbI3 device reaches up to 20.67%, which is among the highest values of CsPbI3 PSCs so far. Due to the defect passivation and hydrophobicity improvement, the PCE of optimized device remains 94% of its original value after 800 h storing under ambient condition. These results provide an efficient way to improve the quality of ETL-perovskite interface by zwitterion ions for achieving high performance inorganic CsPbI3 PSCs.  相似文献   

17.
Wide-bandgap inorganic cesium lead halide CsPbIBr2 is a popular optoelectronic material that researchers are interested in because of the character that balances the power conversion efficiency and stability of solar cells. It also has great potential in semitransparent solar cells, indoor photovoltaics, and as a subcell for tandem solar cells. Although CsPbIBr2-based devices have achieved good performance, the open-circuit voltage (Voc) of CsPbIBr2-based perovskite solar cells (PSCs) is still lower, and it is critical to further reduce large energy losses (Eloss). Herein, a strategy is proposed for achieving surface p-type doping for CsPbIBr2-based perovskite for the first time, using 1,5-Diaminopentane dihydroiodide at the perovskite surface to improve hole extraction efficiency. Meanwhile, the adjusted energy levels reduce Eloss and improve Voc of the CsPbIBr2 PSCs. Furthermore, the Cs- and Br-vacancies at the interface are filled, reducing structural disorder and defect states and thus improving the quality of the perovskite film. As a result, the target device achieves a high efficiency of 11.02% with a Voc of 1.33 V, which is among the best values. In addition to the improved performance, the stability of the target device under various conditions is enhanced, and the lead leakage is effectively suppressed.  相似文献   

18.
Semiconducting molecules have been employed to passivate traps extant in the perovskite film for enhancement of perovskite solar cells (PSCs) efficiency and stability. A molecular design strategy to passivate the defects both on the surface and interior of the CH3NH3PbI3 perovskite layer, using two phthalocyanine (Pc) molecules (NP-SC6-ZnPc and NP-SC6-TiOPc) is demonstrated. The presence of lone electron pairs on S, N, and O atoms of the Pc molecular structures provides the opportunity for Lewis acid–base interactions with under-coordinated Pb2+ sites, leading to efficient defect passivation of the perovskite layer. The tendency of both NP-SC6-ZnPc and NP-SC6-TiOPc to relax on the PbI2 terminated surface of the perovskite layer is also studied using density functional theory (DFT) calculations. The morphology of the perovskite layer is improved due to employing the Pc passivation strategy, resulting in high-quality thin films with a dense and compact structure and lower surface roughness. Using NP-SC6-ZnPc and NP-SC6-TiOPc as passivating agents, it is observed considerably enhanced power conversion efficiencies (PCEs), from 17.67% for the PSCs based on the pristine perovskite film to 19.39% for NP-SC6-TiOPc passivated devices. Moreover, PSCs fabricated based on the Pc passivation method present a remarkable stability under conditions of high moisture and temperature levels.  相似文献   

19.
Perovskite solar cells with all‐organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high‐temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron‐transporting layer of inverted perovskite cells affects the open‐circuit voltage (VOC). It is shown that nonradiative recombination mediated by the electron‐transporting layer is the limiting factor for the VOC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a VOC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge‐blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.  相似文献   

20.
Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electrolytes (NSEs) are introduced, which act not only as charge‐extracting layers for barrier‐free charge collection at planar triple cation PSC cathodes but also passivate charged defects at the perovskite bulk/interface via a spontaneous bottom‐up passivation effect. Implementing these synergistic properties affords NSE‐based planar PSCs that deliver a remarkable power conversion efficiency of 21.18% with a maximum VOC = 1.19 V, in combination with suppressed hysteresis and enhanced environmental, thermal, and light‐soaking stability. Thus, this work demonstrates that the bottom‐up, simultaneous interfacial and bulk trap passivation using NSE modifiers is a promising strategy to overcome outstanding issues impeding further PSC advances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号