首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As described in this paper, we investigate the sediment penetration performance of a portable underwater robot with a helical screw pipe using marine thrusters with limited force. First, we derive a mathematical model based on an empirical and simple method using the undrained shear strength of cohesive soil to provide a rough estimate of maximum penetration depths. Then, we perform numerical analysis for estimating the maximum depth of sediment penetration and for designing a sampling pipe. Additionally, we use experimentation to investigate the relation between the penetration depth of the helical screw pipe and the force of marine thrusters mounted on the portable underwater robot. After testing the penetration performance in a water tank, we conduct a field experiment at Lake Biwa and obtain results of the penetration depths. The maximum penetration into the lake sediment is at least 0.30 m. The results demonstrated the possibility of using the derived mathematical model to make a rough estimation of the maximum penetration depth for clay sediments. Additionally, we can use non-powerful thrusters equipped with small autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) for sediment sampling. The proposed method is also applicable for the installation of underwater sensors using small AUVs and ROVs.  相似文献   

2.
The main focus of this article is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which cannot directly control all six degrees of freedom (such as torpedo-shaped autonomous underwater vehicles) or in case of actuator failure (i.e. under-actuated scenario). A practical example is included to illustrate our technique.  相似文献   

3.
基于阿克曼原理的车式移动机器人运动学建模   总被引:4,自引:0,他引:4  
基于阿克曼原理的轮式移动机器人运动学模型对于无人驾驶车辆的研究有着重要的意义.对轮式移动机器人的运动学特性进行了分析,建立了不考虑滑行、刹车等的轮式移动机器人的运动学模型.对该运动学模型引入了阿克曼约束,给出了描述机器人运动状态的转向角、航向角和转弯半径等物理量的数学公式.最后对该运动学模型进行仿真实验,验证了所建立的运动学模型的正确性,为进一步研究轮式移动机器人提供了理论分析的基础.  相似文献   

4.
Programming autonomous vehicles to accomplish complex missions is a complicated task for which the development of control architectures is of prime importance. The goal of this paper is to describe the accomplishments of both French and American teams within a cooperative research program focused on the development of high-level control of semi-autonomous underwater vehicles. In particular, two different mission-programming methodologies are examined in the context of the requirements of a generic, reactive and complex underwater mission. The French team uses a combination of the ESTEREL synchronous programming language and the PIRRAT real-time control library to implement a methodology derived from the ORCCAD programming system. The approach taken by the American team builds a trilevel hybrid architecture using the CONTROLSHELL real-time software development environment. The details of each methodology are highlighted through the presentation of the high-level programs designed by each team using their approach to control an underwater robot to perform a multiphased underwater mission. The utility of both programming methodologies was verified through the successful completion of those missions in experimental demonstrations by the French VORTEX and American OTTER autonomous underwater vehicles.  相似文献   

5.
This paper address the kinematic variables control problem for the low-speed manoeuvring of a low cost and underactuated underwater vehicle. Control of underwater vehicles is not simple, mainly due to the non-linear and coupled character of system equations, the lack of a precise model of vehicle dynamics and parameters, as well as the appearance of internal and external perturbations. The proposed methodology is an approach included in the control areas of non-linear feedback linearization, model-based and uncertainties consideration, making use of a pioneering algorithm in underwater vehicles. It is based on the fusion of a sliding mode controller and an adaptive fuzzy system, including the advantages of both systems. The main advantage of this methodology is that it relaxes the required knowledge of vehicle model, reducing the cost of its design. The described controller is part of a modular and simple 2D guidance and control architecture. The controller makes use of a semi-decoupled non-linear plant model of the Snorkel vehicle and it is compounded by three independent controllers, each one for the three controllable DOFs of the vehicle. The experimental results demonstrate the good performance of the proposed controller, within the constraints of the sensorial system and the uncertainty of vehicle theoretical models.  相似文献   

6.
MEMS矢量水听器阵列信号处理研究   总被引:1,自引:0,他引:1  
MEMS矢量水听器是一种新型的水声传感器,对这种传感器的原理进行了简要介绍。为了验证该MEMS矢量水听器阵列的目标估计性能,进行了矢量阵的深海实验研究,选取了MUSIC算法应用于该MEMS矢量阵。实验结果表明:在复杂海洋环境中,该MEMS矢量阵能够实现对目标的方位估计和水下运动目标的航迹跟踪,从而验证了该MEMS矢量水听器成阵的可行性,为工程化应用奠定了基础。  相似文献   

7.
This paper deals with the formation control of multiple vehicles, using a combination of dynamic surface sliding control and hybrid systems. Each vehicle must perform several manoeuvres, either independently, or in a coordinated fashion as part of a vehicle formation. A dynamic surface controller is designed for each manoeuvre. Switches between manoeuvres and communication protocols between vehicles are represented using hybrid systems formalisms. Here, we present the design of both independent and coordinated dynamic positioning (DP) controllers for ocean vehicles using dynamic surface control. Independent and coordinated dynamic positioning are manoeuvres that the modules forming a floating runway at sea must perform. Experimental results using scaled modules are shown.  相似文献   

8.
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally,a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).  相似文献   

9.
This paper describes the design of a 7 degree-of-freedom (d.o.f) manipulator for underwater inspection applications. The functional requirements of an underwater manipulator for subsea inspection are discussed and the desired performance requirements identified. The inspection process of a weld joint using a manipulator is described and the desirable attributes of a 5 d.o.f manipulator for the inspection process established. A novel kinematic structure, for Underwater Robotic Vehicle (URV) operation, having a 2 d.o.f launching stages and a 5 d.o.f inspection stage is proposed for the manipulator. This configuration increases the dexterity, without compromising on the total reach of the manipulator. The kinematic structure of the 7 d.o.f, 2 stage, manipulator is presented. A hybrid power actuation is proposed for the manipulator to exploit the benefits of both hydraulic as well as electric actuators. Kinematic analysis of the manipulator is presented. The link dimensions of the inspection stage manipulator is done on the basis of kinematic performance indices of the manipulator. The novel kinematic structure and the hybrid power actuation strategy results in a power efficient, dexterous manipulator for underwater applications.  相似文献   

10.
Aquatic–aerial unmanned vehicles recently became the focus of many researchers due to their various possible applications. Achieving a fully operational vehicle that is capable of aerial, water‐surface, and underwater operations is a significant challenge considering the vehicle's air–water–air transition, propulsion system, and stability underwater. We present in this paper an unconventional unmanned hybrid aquatic–aerial quadcopter with active buoyancy control that is capable of aerial flight and water‐surface operation, as well as subaquatic diving. We report on the first successful prototype of the vehicle, named the Loon Copter, to provide initial evaluation results of its performance in both mediums. The Loon Copter uses a single set of motors and propellers for both air and underwater maneuvering. It utilizes a ballast system to control vehicle buoyancy and depth underwater, as well as to perform seamless air‐to‐water and water‐to‐air transitions. A closed loop control algorithm is utilized for the vehicle's aerial and water‐surface stability and maneuver, whereas an open loop control algorithm is used for underwater maneuver. The experimental results show a fully operational prototype with six degrees of freedom underwater, stable flight, operation capabilities on water surface, and agile maneuvering underwater.  相似文献   

11.
This paper reports the development of a robotic inspection system using a mechanical contact mechanism that enhances the positioning stability of a small and lightweight underwater robot to take clear images of underwater targets and to work with manipulators for inspections under external disturbances. As described in this paper, first we perform a two‐dimensional numerical analysis based on force and moment acting on an underwater robot with a contact mechanism. Second, we experimentally investigate the friction coefficients of several soft and high friction materials for the contact points of a prototype contact mechanism to enhance the positioning stability of the robot. Based on the results of numerical analysis and the experimental investigation, we design and develop a prototype contact mechanism for an underwater robot. Moreover, we experimentally test the stability of the underwater robot with the contact mechanism in a test tank. Finally, a ship hull inspection is conducted as a field test in a port using the robot with the developed contact mechanism. The experimentally obtained results indicate that the proposed contact mechanism is a useful tool for underwater visual inspections and manipulator tasks of a small and lightweight underwater robot.  相似文献   

12.
In regard to the effectiveness of types of knowledge on fault diagnosis performance, many experimental studies showed that training with procedural knowledge (diagnostic rules) is very effective to enhance diagnosis performance. But the effects of training with principle knowledge (theoretical knowledge) have been controversial. Some studies went so far as to claim that principle knowledge is not useful for diagnosis. However, common experience suggests that understanding the principles of system dynamics is valuable in certain diagnostic situations. In this study, we conducted an experiment to investigate the value of principle knowledge in various fault situations. A context‐free digital logic circuit including 41 gates of three basic types was simulated for the subjects to diagnose. The experimental results showed that instructing principle knowledge has positive effects that are dependent on the complexity of diagnostic problems. The observations also provide insights on how fault diagnosis benefits from principle knowledge. © 2007 Wiley Periodicals, Inc. Hum Factors Man 17: 263–282, 2007.  相似文献   

13.
Hybrid kinematic and dynamic simulation of running machines   总被引:1,自引:0,他引:1  
Dynamic simulation requires the computationally expensive calculation of joint accelerations, while in kinematic simulation these accelerations are known based on a given trajectory. This paper describes a hybrid kinematic and dynamic simulation method that can be applied to the simulation of running machines to speed up the computations over that of a dynamic simulation. This is possible because much of the time the legs of a running machine are in the air and their trajectories are directly specified and tightly controlled. The method is more flexible than dynamic simulation alone because it allows joints to be either motion-controlled or force-controlled. It is general to all robotic systems with tree structures, and fully motion-controlled or force-controlled kinematic loops. It should work best for machines with appendages that are motion-controlled, such as those encountered in underwater and space manipulation.  相似文献   

14.
《Advanced Robotics》2013,27(15):2113-2138
In this paper, we study sensor fusion for the attitude stabilization of micro aerial vehicles, particularly mechanical flying insects. Following a geometric approach, a dynamic observer is proposed that estimates attitude based on kinematic data available from different and redundant bioinspired sensors such as halteres, ocelli, gravitometers, magnetic compass and light polarization compass. In particular, the traditional structure of complementary filters, suitable for multiple sensor fusion, is specialized to the Lie group of rigid-body rotations SO(3). The filter performance based on a three-axis accelerometer and a three-axis gyroscope is experimentally tested on a 2-d.o.f. support, showing its effectiveness. Finally, attitude stabilization is proposed based on a feedback scheme with dynamic estimation of the state, i.e., the orientation and the angular velocity. Almost-global stability of the proposed controller in the case of dynamic state estimation is demonstrated via the separation principle, and realistic numerical simulations with noisy sensors and external disturbances are provided to validate the proposed control scheme.  相似文献   

15.
Parallel mechanisms (PMs) with two rotational degrees-of-freedom (DOF) and one translational DOF (2R1T) have gained much attention, in view of their good comprehensive performance in the field of machine tools. In this paper, a novel 2R1T 2UPU/SP PM is presented, and a 5-DOF hybrid serial-parallel manipulator is constructed on the basis of this novel PM. First, to better understand typical 2R1T PMs, a type synthesis method in virtue of the inner properties of PMs are investigated; in particular, the construction principles for the 2UPU/SP PM are introduced. Second, as the 2UPU/SP PM belongs to an over-constrained 2R1T PM, the constraint force and torque generated on the moving platform (MP) are analyzed in detail, and the rotational axes of the 2UPU/SP PM are obtained. Third, the kinematics of the 2UPU/SP PM are studied systematically, including position, velocity and acceleration analysis; based on the kinematic model, an inverse dynamic model is established using the virtual work principle method. The analysis of this PM shows that its kinematic and dynamic models are quite simple. To confirm the correctness of the kinematic and dynamic models, numerical simulations are performed. Next, the workspace is drawn using MATLAB and CAD softwares, which makes it possible to visualize it fully. Finally, the dimensional synthesis on the basis of the motion/force transmissibility is analyzed and relatively optimized physical dimensions are obtained. This study will enhance the research applications of PM and establish good theoretical foundations for the application of this novel manipulator.  相似文献   

16.
Sliding mode control is a very attractive control scheme because of its robustness against both structured and unstructured uncertainties as well as external disturbances. In this way, it has been widely employed for the dynamic positioning of remotely operated underwater vehicles. Nevertheless, in such situations the discontinuities in the control law must be smoothed out to avoid the undesirable chattering effects. The adoption of properly designed boundary layers has proven effective in completely eliminating chattering, however, leading to an inferior tracking performance. This work describes the development of a dynamic positioning system for remotely operated underwater vehicles. The adopted approach is primarily based on the sliding mode control strategy and enhanced by an adaptive fuzzy algorithm for uncertainty/disturbance compensation. Using the Lyapunov stability theory and Barbalat’s lemma, the boundedness and convergence properties of the closed-loop signals are analytically proven. The performance of the proposed control scheme is also evaluated by means of numerical simulations.  相似文献   

17.
This paper presents a study on the coupling between a fluid solver and a motion solver to perform fluid–structure interaction (FSI) simulations of floating bodies such as point absorber wave energy converters heaving under wave loading. The two-phase fluid solver with dynamic mesh handling, interDyMFoam, is a part of the Computational Fluid Dynamics (CFD) toolbox OpenFOAM. The incompressible Navier–Stokes (NS) equations are solved together with a conservation equation for the Volume of Fluid (VoF). The motion solver is computing the kinematic body motion induced by the fluid flow. A coupling algorithm is needed between the fluid solver and the motion solver to obtain a converged solution between the hydrodynamic flow field around and the kinematic motion of the body during each time step in the transient simulation. For body geometries with a significant added mass effect, simple coupling algorithms show slow convergence or even instabilities. In this paper, we identify the mechanism for the numerical instability and we derive an accelerated coupling algorithm (based on a Jacobian) to enhance the convergence speed between the fluid and motion solver. Secondly, we illustrate the coupling algorithm by presenting a free decay test of a heaving wave energy converter. Thirdly and most challenging, a water impact test of a free falling wedge with a significant added mass effect is successfully simulated. For both test cases, the numerical results obtained by using the accelerated coupling algorithm are in a very good agreement with the experimental measurements.  相似文献   

18.
This paper assesses the use of a potential-based fluid finite element formulation to investigate earthquake excited dam–reservoir systems. The mathematical background of the analytical and numerical techniques is presented in a unified format. Frequency and time-domain analyses are conducted to validate the potential-based finite element formulation. A case study of a typical dam–reservoir system subjected to earthquake loading is presented. The dynamic response of the system is discussed to illustrate the effects of fluid–structure interaction and reservoir bottom absorption. The validated potential-based fluid elements and boundary conditions are shown to perform adequately for practical seismic analysis of dam–reservoir systems.  相似文献   

19.
利用传统协调控制策略或模型预测控制(MPC)方法能够解决离合器模式切换的平顺性,但其改善效果不显著,且缺乏深入的细化研究.因此,为了改进混合动力汽车有离合器结合的模式切换过程中的平顺性,本文基于MPC制定有离合器模式切换过程的动态协调控制策略.在对混合动力系统有离合器模式切换模型进行简化的基础上,开展MPC在模式切换动态协调控制过程的原理描述,以减小有离合器模式间切换的冲击度进行基于MPC动态协调控制策略设计,并对不同权重下的冲击度进行了详细的对比.通过实验验证,其结果表明采用MPC的模式切换协调控制最大冲击度从26.3 m/s^3下降至9.26 m/s^3,降低了64.8%,明显的抑制了模式切换过程中的冲击度,有效的改善了模式切换的平顺性.  相似文献   

20.
超空泡水下航行器定深控制研究   总被引:4,自引:1,他引:3  
极高的航速使得对超空泡水下航行器的控制变得异常复杂. 为了对其深度进行有效控制, 必须对其纵平面运动特性进行研究. 本文首先建立了超空泡水下航行器的纵平面运动模型, 分析了其纵平面运动特性; 然后进行了控制算法的综合; 最后, 仿真及试验结果均验证了所设计的航行器纵平面运动控制算法的有效性. 试验结果表明该控制系统具有较高的控制精度. 本文的研究成果为进一步研究水下超空泡航行器的运动控制提供了必要的理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号