首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper proposes an adaptive trajectory generation method for quadruped robots with semicircular feet to control body speed and heading, and to minimize power consumption on uneven terrain. The semicircular foot with single line of contact is easier to solve the kinematic problems than flat feet with active ankle joints. And its wheel-like rolling motion leads to improvement in power autonomy and reduction of impact forces. The adaptive gait patterns are changed by the sequential modulation of the locomotion period and the stride per step which are determined by the desired body speed and heading commands, and external environments. The efficiency and performance of the developed method are verified through computer simulations and experiments using a hydraulic actuated quadrupedal robot.  相似文献   

2.
六边形对称分布六腿机器人的典型步态及其运动性能分析   总被引:1,自引:0,他引:1  
为了便于在不同地理条件下合理地选择较优的步态,实现稳定高效的智能行走,本文针对一种六边形 对称分布的六腿机器人研究其不同步态的优劣.主要从行走能力、稳定性和能耗3 个角度对六边形对称结构的六腿 机器人在同样占空比下的3 种静态稳定周期步态进行了比较研究,此外还简要分析了其越障能力和穿越窄道的能 力.研究分析结果表明3 种步态(横向昆虫式摆动步态、哺乳动物式踢腿步态和混合步态)在不同条件下各有优劣: 横向昆虫式摆动步态在能耗和越障能力方面较其他两种步态有优势;而混合步态在稳定性上最具优势,其它能力处 于中间;哺乳动物式踢腿步态则可穿越窄道,步长上较昆虫摆动步态略好.本文的研究工作为六边形对称结构的六 腿机器人在未知复杂地貌环境下的智能行走提供了重要参考.  相似文献   

3.
We present a new terrain classification technique both for effective, autonomous locomotion over rough, unknown terrains and for the qualitative analysis of terrains for exploration and mapping. Our approach requires a single camera with little processing of visual information. Specifically, we derived a gait bounce measure from visual servoing errors that results from vehicle-terrain interactions during normal locomotion. Characteristics of the terrain, such as roughness and compliance, manifest themselves in the spatial patterns of this signal and can be extracted using pattern classification techniques. This vision-based approach is particularly beneficial for resource-constrained robots with limited sensor capability. In this paper, we present the gait bounce derivation. We demonstrate the viability of terrain classification for legged vehicles using gait bounce with a rigorous study of more than 700 trials, obtaining an 83% accuracy on a set of laboratory terrains. We describe how terrain classification may be used for gait adaptation, particularly in relation to an efficiency metric. We also demonstrate that our technique may be generally applicable to other locomotion mechanisms such as wheels and treads.  相似文献   

4.
轮腿复合式机器人是在轮式机器人的基础上,通过优化轮子设计以达到快速灵活运动的一种新型的地面移动系统。该机器人主体由机架、两条主轴、齿轮减速机构、轮腿复合机构组成,由单电机驱动,控制系统相对简单。该机器人相比于普通轮式机器人具有较强的越障能力,且结构精简、体积小、重量轻。采用ADAMS对该机器人进行了运动学和动力学仿真,详细探讨了其越障能力、安装相位、轮腿结构、步态等关键问题,为其物理样机的设计、优化和控制提供了理论依据。  相似文献   

5.
Generating a robust gait is one of the most important factors to improve the adaptability of quadruped robots on rough terrains. This paper presents a new continuous free gait generation method for quadruped robots capable of walking on the rough terrain characterized by the uneven ground and forbidden areas. When walking with the proposed gait, the robot can effectively maintain its stability by using the Center of Gravity (COG) trajectory planning method. After analyzing the point cloud of rough terrain, the forbidden areas of the terrain can be obtained. Based on this analysis, an optimal foothold search strategy is presented to help quadruped robot to determine the optimum foothold for the swing foot automatically. In addition, the foot sequence determining method is proposed to improve the performance of robot. With the free gait proposed in this paper, quadruped robot can walk through the rough terrains automatically and successfully. The correctness and effectiveness of the proposed method is verified via simulations.  相似文献   

6.
胡钢墩  郭辉  雷宁 《测控技术》2017,36(9):127-130
在各种异构的沙基机器人中,C形腿在松软的沙基中抓地能力最好.为了分析C形腿轮在沙基运动时受力情况,设计了C形腿环形实验台.利用地面动力学理论对C形腿上的应力传感器安装位置进行了合理性分析、设计.利用最新的PC技术与PCI-6143多功能数据采集卡搭建了高速数据采集硬件平台,并以LabVIEW作为软件开发平台,采用模块化编程思想,实现了对多传感器数据的高速同步检测.该实验台既可在沙漠中做机器人步态测试,也可做沙槽实验为C形腿轮在沙基中受力分析提供实验数据.  相似文献   

7.
具备学习能力是高等动物智能的典型表现特征, 为探明四足动物运动技能学习机理, 本文对四足机器人步 态学习任务进行研究, 复现了四足动物的节律步态学习过程. 近年来, 近端策略优化(PPO)算法作为深度强化学习 的典型代表, 普遍被用于四足机器人步态学习任务, 实验效果较好且仅需较少的超参数. 然而, 在多维输入输出场 景下, 其容易收敛到局部最优点, 表现为四足机器人学习到步态节律信号杂乱且重心震荡严重. 为解决上述问题, 在元学习启发下, 基于元学习具有刻画学习过程高维抽象表征优势, 本文提出了一种融合元学习和PPO思想的元近 端策略优化(MPPO)算法, 该算法可以让四足机器人进化学习到更优步态. 在PyBullet仿真平台上的仿真实验结果表 明, 本文提出的算法可以使四足机器人学会行走运动技能, 且与柔性行动者评价器(SAC)和PPO算法的对比实验显 示, 本文提出的MPPO算法具有步态节律信号更规律、行走速度更快等优势.  相似文献   

8.
Yi Sun 《Advanced Robotics》2013,27(8):611-625
Most of recently developed rescue robots can only be deployed to limited attacked regions after tsunami and the floods, due to their limited mobility on complex amphibious terrains. To access such amphibious environments with improved mobility, we propose a novel eccentric paddle mechanism (ePaddle) which has a set of paddles eccentrically placed in a wheel to perform multiple terrestrial, aquatic, and amphibious gaits. One of the advantages of our proposed ePaddle mechanism is its unique locomotion versatility introduced by the eccentric distance between the paddle shaft and the wheel center. We demonstrate this versatility by proposing five typical gaits for traveling on different terrains. For instance, wheeled rolling gait is used to achieve high-speed locomotion on even terrain. Legged gait is applied to travel on the rough terrains. To access the soft terrains where wheels slip and legs sink, a wheel-leg-integrated gait is performed by digging the paddle into the ground. To swim in the water, rotational paddling and oscillating paddling gaits are proposed. For each of these gaits, standard gait sequence is defined and joint parameters are calculated based on kinematics. An ePaddle prototype is then built and tested with the proposed gait sequences. Experimental results verify the design of the ePaddle mechanism as well as its versatile gaits.  相似文献   

9.
《Ergonomics》2012,55(11):1507-1508
Abstract

Texting on a cell phone disrupts walkers’ gait performance. The performance decrement has been attributed to increased motor demand, decreased visual information and increased cognitive load. However, relative contributions of motor, visual and cognitive factors are poorly understood. Here we quantitatively estimated the relative contributions of these factors by comparing multiple walking conditions. Thirty-two adults walked for 20 m, with or without a dual task on the phone. The dual task was either a cognitively demanding digit ordering task or a casual tapping task. Gait performance was assessed using gait speed, stride length, stride time and stride time variability. Results showed that texting negatively impacted gait performance. Importantly, we found that cognitive factor contributed the most, visual factor the least, and motor factor in between. Our findings resolve the inconsistency in the literature and unambiguously show that motor, visual and cognitive factors caused by simultaneous phone use all contribute to gait alterations.

Practitioner Summary: Walking performance is typically worsened when a concurrent phone use task such as texting is performed. We found that visual, motor and cognitive factors contributed to this performance decrement with increasing importance. Besides resolving inconsistency among previous reports, we also raised theoretical and practical concerns for phone use during walking.  相似文献   

10.
《Advanced Robotics》2013,27(9):863-878
Fault tolerance is an important aspect in the development of control systems for multi-legged robots since a failure in a leg may lead to a severe loss of static stability of a gait. In this paper, an algorithm for tolerating a locked joint failure is described in gait planning for a quadruped robot with crab walking. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but legged robots have fault tolerance capability to continue walking maintaining static stability. A strategy for fault-tolerant gaits is described and, especially, a periodic gait is presented for crab walking of a quadruped. The leg sequence and the formula of the stride length are analytically driven based on gait study and robot kinematics. The adjustment procedure from a normal gait to the proposed fault-tolerant crab gait is shown to demonstrate the applicability of the proposed scheme.  相似文献   

11.
Multi-legged robots need fault-tolerant gaits if one of attached legs suffers from a failure and cannot have normal operation. Moreover, when the robots with a failed leg are walking over rough terrain, fault-tolerance should be combined with adaptive gait planning for successful locomotion. In this paper, a strategy of fault-tolerant gaits is proposed which enables a hexapod robot with a locked joint failure to traverse two-dimensional rough terrain. This strategy applies a Follow-The-Leader (FTL) gait in post-failure walking, having the advantages of both fault-tolerance and terrain adaptability. The proposed FTL gait can produce the maximum stride length for a given foot position of a failed leg and better ditch-crossing ability than the previous fault-tolerant gaits. The applicability of the proposed FTL gait is verified using computer graphics simulations.  相似文献   

12.
Power Consumption Optimization for a Hexapod Walking Robot   总被引:1,自引:0,他引:1  
Power consumption is one of the main operational restrictions on autonomous walking robots. In this paper, an energy efficiency analysis is performed for a hexapod walking robot to reduce these energy costs. To meet the power-saving demands of legged robots, the torque distribution algorithm required to minimize the system’s energy costs was established with an energy-consumption model formulated. In contrast to the force distribution method, where the objective function is related to the tip-point force components, the torque distribution scheme is based on minimization of the mechanical energy cost and heat loss power. The simulation results show that this scheme could reduce the system energy costs with use of the appropriate walking velocities and duty factors for the robot. The paper also discusses the effects of the gait patterns and the mechanical structure on the system energy costs. For this purpose, the prescribed periodic walking gait of the robot is described in terms of several parameters, including the duty factor, the stride length, the body height, and the foot trajectory lateral offset. The numerical results indicate some analogies between the characteristics of the simulated walking robot and those of animals in nature. The optimized parameters derived here are intended for robot platform development applications.  相似文献   

13.
This paper presents the design and control of Q-Whex, an untethered, quasi-wheeled hexapod robot. Q-Whex has only six actuators—one motor located at each hip—achieving mechanical simplicity that promotes reliable and robust operation in real-world tasks. All of the robot's mechanical parts are simply fabricated with carbon fiber plates, which makes the robot very easy to make. Q-Whex is capable of performing wheeled-like smooth rides over flat ground with a tripod gait, and thereby prevent the common problem of trunk fluctuations in legged-wheel robots. It is also able to traverse height variations well exceeding its trunk clearance. The performance of Q-Whex is evaluated in various scenarios, including driving and turning over flat terrains, ramp-riding, step-crossing, stair-climbing, and irregular terrain-traversing.  相似文献   

14.
One of the major obstacles to achieving robots capable of operating in real-world environments is enabling them to cope with a continuous stream of unanticipated situations. In previous work, it was demonstrated that a robot can autonomously generate self-models, and use those self-models to diagnose unanticipated morphological change such as damage. In this paper, it is shown that multiple physical quadrupedal robots with similar morphologies can share self-models in order to accelerate modeling. Further, it is demonstrated that quadrupedal robots which maintain separate self-modeling algorithms but swap self-models perform better than quadrupedal robots that rely on a shared self-modeling algorithm. This finding points the way toward more robust robot teams: a robot can diagnose and recover from unanticipated situations faster by drawing on the previous experiences of the other robots.  相似文献   

15.
The minimum level of series compliance that adequately protects the transmission from damage during foot collision fails to satisfy bandwidth requirements. As a resolution to this difficulty, parallel motor elasticity is used to lower the forces borne by the SEA, enhancing system force bandwidth. To minimize prosthesis COT and motor or transmission size, we select a parallel stiffness that supplies the necessary ankle stiffness during early stance period dorsiflexion, eliminating the need for SEA during that gait phase. In future investigations, we hope to apply the ankle-foot design to robotic, orthotic, and exoskeletal applications. In the design of biomimetic ankle-foot systems, we feel both series and parallel motor elasticity are of paramount importance.  相似文献   

16.
Control of variable speed gaits for a biped robot   总被引:1,自引:0,他引:1  
We discuss a balance scheme for handling variable-speed gaits that was implemented on an experimental biped at the University of New Hampshire. The control scheme uses preplanned but adaptive motion sequences in combination with closed-loop reactive control. CMAC neural networks are responsible for the adaptive control of side-to-side and front-to-back balance. The biped is able to walk with variable-speed gaits and to change gait speeds on the fly. The slower gait speeds require statically balanced walking, while the faster speeds require dynamically balanced walking. It is not necessary to distinguish between the two balance modes within the controller. Following training, the biped is able to walk on flat, nonslippery surfaces at forward velocities in the range of 21 cm/min to 72 cm/min, with an average stride length of 6.5 cm  相似文献   

17.
Discriminating or classifying different terrains is an important ability for every autonomous mobile robot. A variety of sensors, preprocessing techniques, and algorithms in different robots were applied. However, little attention was paid to the way sensory data was generated and to the contribution of different sensory modalities. In this work, a quadruped robot traversing different grounds using a variety of gaits is used, equipped with a collection of proprioceptive (encoders on active, and passive compliant joints), inertial, and foot pressure sensors. The effect of different gaits on classification performance is assessed and it is demonstrated that separate terrain classifiers for each motor program should be employed. Furthermore, poor performance of randomly generated motor commands confirms the importance of coordinated behavior on sensory information structuring. The collection of sensors sensitive to active, “tactile”, terrain exploration proved effective. Among the individual modalities, encoders on passive compliant joints delivered best results.  相似文献   

18.
Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the “phase locking” mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain.  相似文献   

19.
一种有腿机器人步态轨迹生成算法   总被引:2,自引:0,他引:2  
目前存在一类有腿机器人,由于其底层动力学控制参数难于获取,行走设计无法使用已有的控制方法,现有的基于建模的步态存在缺乏完善规划,固定规划步态与实际步态相差较大的问题,针对这个问题,提出一种使用曲线拟合生成步态轨迹的想法,通过引入遗传算法,让机器人能自主的搜索良好的行走步态轨迹,在四足步行机器人平台上取得了良好的实验结果.  相似文献   

20.
In this study, a quadrupedal pronking gait robot modeling was carried out with Spring Loaded Inverted Pendulum model in stance phase. This is achieved by solving a natural problem in which the main goal is to enable the robot to walk and run in a stable condition regardless of the environmental conditions. In order to solve this problem, dynamic model and control of a quadrupedal robot were realized for a pronking gait. The stance and flight phase dynamic structures were solved in a sequential closed loop to obtain the equation of motion for pronking gait. Spring Loaded Inverted Pendulum model was used as a dynamic model to simplify the simulation, dynamic locomotion and experimental works of the system, and also to simplify the pronking gait concept. The quadrupedal robot with pronking gait was controlled by proportional-derivative control algorithm. As a result, all computer simulations have shown that the proposed control actions and methods are more effective and make the system control quite easy and successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号