首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic code expansion through amber stop codon suppression provides a powerful tool for introducing non‐proteinogenic functionalities into proteins for a broad range of applications. However, ribosomal incorporation of noncanonical amino acids (ncAAs) by means of engineered aminoacyl–tRNA synthetases (aaRSs) often proceeds with significantly reduced efficiency compared to sense codon translation. Here, we report the implementation of a versatile platform for the development of engineered aaRSs with enhanced efficiency in mediating ncAA incorporation by amber stop codon suppression. This system integrates a white/blue colony screen with a plate‐based colorimetric assay, thereby combining high‐throughput capabilities with reliable and quantitative measurement of aaRS‐dependent ncAA incorporation efficiency. This two‐tier functional screening system was successfully applied to obtain a pyrrolysyl–tRNA synthetase (PylRS) variant (CrtK‐RS(4.1)) with significantly improved efficiency (+250–370 %) for mediating the incorporation of N?‐crotonyl‐lysine and other lysine analogues of relevance for the study of protein post‐translational modifications into a target protein. Interestingly, the beneficial mutations accumulated by CrtK‐RS(4.1) were found to localize within the noncatalytic N‐terminal domain of the enzyme and could be transferred to another PylRS variant, improving the ability of the variant to incorporate its corresponding ncAA substrate. This work introduces an efficient platform for the improvement of aaRSs that could be readily extended to other members of this enzyme family and/or other target ncAAs.  相似文献   

2.
A new method has been developed to reassign the rare codon AGA in Escherichia coli by engineering an orthogonal tRNA/aminoacyl–tRNA synthetase pair derived from Methanocaldococcus jannaschii. The tRNA mutant was introduced with a UCU anticodon, and the synthetase was evolved to correctly recognize the modified tRNA anticodon loop and to selectively charge a target noncanonical amino acid (NAA) onto the tRNA. In order to maximize the efficiency of AGA codon reassignment, while avoiding the lethal effects caused by global codon reassignment in cellular proteins, an inducible promoter (araBAD) was utilized to provide temporal controls for overexpression of the aminoacyl–tRNA synthetase and switch on codon reassignment. Using this system, we were able to efficiently incorporate p‐acetylphenylalanine, O‐methyl‐tyrosine, and p‐iodophenylalanine into proteins in response to AGA codons. Also, we found that E. coli strain GM10 was optimal in achieving the highest AGA reassignment rates. The successful reassignment of AGA codons reported here provides a new avenue to further expand the genetic code.  相似文献   

3.
A quantitative understanding of how system composition and molecular properties conspire to determine the fidelity of translation is lacking. Our strategy directs an orthogonal tRNA to directly compete against endogenous tRNAs to decode individual targeted codons in a GFP reporter. Sets of directed sense codon reassignment measurements allow the isolation of particular factors contributing to translational fidelity. In this work, we isolated the effect of tRNA concentration on translational fidelity by evaluating reassignment of the 15 least commonly employed E. coli sense codons. Eight of the rarely used codons are reassigned with greater than 20 % efficiency. Both tRNA abundance and codon demand moderately inversely correlate with reassignment efficiency. Furthermore, the reassignment of rarely used codons does not appear to confer a fitness advantage relative to reassignment of other codons. These direct competition experiments also map potential targets for genetic code expansion. The isoleucine AUA codon is particularly attractive for the incorporation of noncanonical amino acids, with a nonoptimized reassignment efficiency of nearly 70 %.  相似文献   

4.
The noncanonical amino acid S‐allyl cysteine (Sac) is one of the major compounds of garlic extract and exhibits a range of biological activities. It is also a small bioorthogonal alkene tag capable of undergoing controlled chemical modifications, such as photoinduced thiol‐ene coupling or Pd‐mediated deprotection. Its small size guarantees minimal interference with protein structure and function. Here, we report a simple protocol efficiently to couple in‐situ semisynthetic biosynthesis of Sac and its incorporation into proteins in response to amber (UAG) stop codons. We exploited the exceptional malleability of pyrrolysyl‐tRNA synthetase (PylRS) and evolved an S‐allylcysteinyl‐tRNA synthetase (SacRS) capable of specifically accepting the small, polar amino acid instead of its long and bulky aliphatic natural substrate. We succeeded in generating a novel and inexpensive strategy for the incorporation of a functionally versatile amino acid. This will help in the conversion of orthogonal translation from a standard technique in academic research to industrial biotechnology.  相似文献   

5.
Sense codon recoding is the basis for genetic code expansion with more than two different noncanonical amino acids. It requires an unused (or rarely used) codon, and an orthogonal tRNA synthetase:tRNA pair with the complementary anticodon. The Mycoplasma capricolum genome contains just six CGG arginine codons, without a dedicated tRNAArg. We wanted to reassign this codon to pyrrolysine by providing M. capricolum with pyrrolysyl‐tRNA synthetase, a synthetic tRNA with a CCG anticodon (${{\rm tRNA}{{{\rm Pyl}\hfill \atop {\rm CCG}\hfill}}}$ ), and the genes for pyrrolysine biosynthesis. Here we show that ${{\rm tRNA}{{{\rm Pyl}\hfill \atop {\rm CCG}\hfill}}}$ is efficiently recognized by the endogenous arginyl‐tRNA synthetase, presumably at the anticodon. Mass spectrometry revealed that in the presence of ${{\rm tRNA}{{{\rm Pyl}\hfill \atop {\rm CCG}\hfill}}}$ , CGG codons are translated as arginine. This result is not unexpected as most tRNA synthetases use the anticodon as a recognition element. The data suggest that tRNA misidentification by endogenous aminoacyl‐tRNA synthetases needs to be overcome for sense codon recoding.  相似文献   

6.
Genetic code expansion and reprogramming methodologies allow us to incorporate non-canonical amino acids (ncAAs) bearing various functional groups, such as fluorescent groups, bioorthogonal functional groups, and post-translational modifications, into a desired position or multiple positions in polypeptides both in vitro and in vivo. In order to efficiently incorporate a wide range of ncAAs, several methodologies have been developed, such as orthogonal aminoacyl-tRNA-synthetase (AARS)–tRNA pairs, aminoacylation ribozymes, frame-shift suppression of quadruplet codons, and engineered ribosomes. More recently, it has been reported that an engineered translation system specifically utilizes an artificially built genetic code and functions orthogonally to naturally occurring counterpart. In this review we summarize recent advances in the field of ribosomal polypeptide synthesis containing ncAAs.  相似文献   

7.
Methanosarcina species pyrrolysyl‐tRNA synthetase (PylRS) attaches Pyl to its cognate amber suppressor tRNA. The introduction of two mutations (Y384F and Y306A) into PylRS was previously shown to generate a mutant, designated LysZ‐RS, that was able to attach N‐benzyloxycarbonyl‐L ‐lysine (LysZ) to its cognate tRNA. Despite the potential of LysZ derivatives, further LysZ‐RS engineering has not been performed; consequently, we aimed to generate LysZ‐RS mutants with improved LysZ incorporation activity through in vitro directed evolution. Using a liposome‐based in vitro compartmentalization (IVC) approach, we screened a randomly mutagenized gene library of LysZ‐RS and obtained a mutant that showed increased LysZ incorporation activity both in vitro and in vivo. The ease and high flexibility of liposome‐based IVC should enable the evolution of not only LysZ‐RS that can attach various LysZ derivatives but also of other enzymes involved in protein translation.  相似文献   

8.
By evolving the N‐terminal domain of Methanosarcina mazei pyrrolysyl‐tRNA synthetase (PylRS) that directly interacts with tRNAPyl, a mutant clone displaying improved amber‐suppression efficiency for the genetic incorporation of N?‐(tert‐butoxycarbonyl)‐l ‐lysine threefold more than the wild type was identified. The identified mutations were R19H/H29R/T122S. Direct transfer of these mutations to two other PylRS mutants that were previously evolved for the genetic incorporation of N?‐acetyl‐l ‐lysine and N?‐(4‐azidobenzoxycarbonyl)‐l ‐δ,?‐dehydrolysine also improved the incorporation efficiency of these two noncanonical amino acids. As the three identified mutations were found in the N‐terminal domain of PylRS that was separated from its catalytic domain for charging tRNAPyl with a noncanonical amino acid, they could potentially be introduced to all other PylRS mutants to improve the incorporation efficiency of their corresponding noncanonical amino acids. Therefore, it represents a general strategy to optimize the pyrrolysine incorporation system‐based noncanonical amino‐acid mutagenesis.  相似文献   

9.
The pyrrolysine tRNA synthetase-tRNA pair is probably one of the most promiscuous tRNA–synthetase pairs found in nature, capable of genetically encoding a plethora of noncanonical amino acids through stop codon reassignment. Proteins containing reactive handles, post-translational modification mimics or both can be produced in practical quantities, allowing inter alia the probing of biological pathways, generating antibody–drug conjugates and enhancing protein function. This Minireview summarises the development of pyrrolysine amber stop-codon suppression, presents some of the considerations required to utilise this technique to its greatest potential, and showcases the creative ways in which this technique has led to a better understanding of biological systems.  相似文献   

10.
A protocol was designed for plasmid curing using a novel counter-selectable marker, named pylSZK-pylT, in Escherichia coli. The pylSZK-pylT marker consists of the archaeal pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl) with modification, and incorporates an unnatural amino acid (Uaa), Nε-benzyloxycarbonyl-l-lysine (ZK), at a sense codon in ribosomally synthesized proteins, resulting in bacterial growth inhibition or killing. Plasmid curing is performed by exerting toxicity on pylSZK-pylT located on the target plasmid, and selecting only proliferative bacteria. All tested bacteria obtained using this protocol had lost the target plasmid (64/64), suggesting that plasmid curing was successful. Next, we attempted to exchange plasmids with the identical replication origin and an antibiotic resistance gene without plasmid curing using a modified protocol, assuming substitution of plasmids complementing genomic essential genes. All randomly selected bacteria after screening had only the substitute plasmid and no target plasmid (25/25), suggesting that plasmid exchange was also accomplished. Counter-selectable markers based on PylRS-tRNApyl, such as pylSZK-pylT, may be scalable in application due to their independence from the host genotype, applicability to a wide range of species, and high tunability due to the freedom of choice of target codons and Uaa’s to be incorporated.  相似文献   

11.
12.
13.
Transfer RNA (tRNA) is an RNA molecule that carries amino acids to the ribosomes for protein synthesis. These tRNAs function at the peptidyl (P) and aminoacyl (A) binding sites of the ribosome during translation, with each codon being recognized by a specific tRNA. Due to this specificity, tRNA modification is essential for translational efficiency. Many enzymes have been implicated in the modification of bacterial tRNAs, and these enzymes may complex with one another or interact individually with the tRNA. Approximately, 100 tRNA modification enzymes have been identified with glucose-inhibited division (GidA) protein and MnmE being two of the enzymes studied. In Escherichia coli and Salmonella, GidA and MnmE bind together to form a functional complex responsible for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm5s2U34) of tRNAs. Studies have implicated this pathway in a major pathogenic regulatory mechanism as deletion of gidA and/or mnmE has attenuated several bacterial pathogens like Salmonella enterica serovar Typhimurium, Pseudomonas syringae, Aeromonas hydrophila, and many others. In this review, we summarize the potential role of the GidA/MnmE tRNA modification pathway in bacterial virulence, interactions with the host, and potential therapeutic strategies resulting from a greater understanding of this regulatory mechanism.  相似文献   

14.
During maturation, tRNA molecules undergo a series of individual processing steps, ranging from exo- and endonucleolytic trimming reactions at their 5''- and 3''-ends, specific base modifications and intron removal to the addition of the conserved 3''-terminal CCA sequence. Especially in mitochondria, this plethora of processing steps is completed by various editing events, where base identities at internal positions are changed and/or nucleotides at 5''- and 3''-ends are replaced or incorporated. In this review, we will focus predominantly on the latter reactions, where a growing number of cases indicate that these editing events represent a rather frequent and widespread phenomenon. While the mechanistic basis for 5''- and 3''-end editing differs dramatically, both reactions represent an absolute requirement for generating a functional tRNA. Current in vivo and in vitro model systems support a scenario in which these highly specific maturation reactions might have evolved out of ancient promiscuous RNA polymerization or quality control systems.  相似文献   

15.
Genetic code expansion (GCE) is a versatile tool to site-specifically incorporate a noncanonical amino acid (ncAA) into a protein, for example, to perform fluorescent labeling inside living cells. To this end, an orthogonal aminoacyl-tRNA-synthetase/tRNA (RS/tRNA) pair is used to insert the ncAA in response to an amber stop codon in the protein of interest. One of the drawbacks of this system is that, in order to achieve maximum efficiency, high levels of the orthogonal tRNA are required, and this could interfere with host cell functionality. To minimize the adverse effects on the host, we have developed an inducible GCE system that enables us to switch on tRNA or RS expression when needed. In particular, we tested different promotors in the context of the T-REx or Tet-On systems to control expression of the desired orthogonal tRNA and/or RS. We discuss our result with respect to the control of GCE components as well as efficiency. We found that only the T-REx system enables simultaneous control of tRNA and RS expression.  相似文献   

16.
We describe the genetically directed incorporation of aminooxy functionality into recombinant proteins by using a mutant Methanosarcina barkeri pyrrolysyl‐tRNA synthetase/tRNACUA pair. This allows the general production of nonhydrolysable ubiquitin conjugates of recombinant origin by bioorthogonal oxime ligation. This was exemplified by the preparation of nonhydrolysable versions of diubiquitin, polymeric ubiquitin chains and ubiquitylated SUMO. The conjugates exhibited unrivalled isostery with the native isopeptide bond, as inferred from structural and biophysical characterisation. Furthermore, the conjugates functioned as nanomolar inhibitors of deubiquitylating enzymes and were recognised by linkage‐specific antibodies. This technology should provide a versatile platform for the development of powerful tools for studying deubiquitylating enzymes and for elucidating the cellular roles of diverse polyubiquitin linkages.  相似文献   

17.
The evolutional development of the RNA translation process that leads to protein synthesis based on naturally occurring amino acids has its continuation via synthetic biology, the so-called rational bioengineering. Genetic code expansion (GCE) explores beyond the natural translational processes to further enhance the structural properties and augment the functionality of a wide range of proteins. Prokaryotic and eukaryotic ribosomal machinery have been proven to accept engineered tRNAs from orthogonal organisms to efficiently incorporate noncanonical amino acids (ncAAs) with rationally designed side chains. These side chains can be reactive or functional groups, which can be extensively utilized in biochemical, biophysical, and cellular studies. Genetic code extension offers the contingency of introducing more than one ncAA into protein through frameshift suppression, multi-site-specific incorporation of ncAAs, thereby increasing the vast number of possible applications. However, different mediating factors reduce the yield and efficiency of ncAA incorporation into synthetic proteins. In this review, we comment on the recent advancements in genetic code expansion to signify the relevance of systems biology in improving ncAA incorporation efficiency. We discuss the emerging impact of tRNA modifications and metabolism in protein design. We also provide examples of the latest successful accomplishments in synthetic protein therapeutics and show how codon expansion has been employed in various scientific and biotechnological applications.  相似文献   

18.
Site-specific incorporation of unnatural amino acids (uAAs) bearing a bioorthogonal group has enabled the attachment – typically at a single site or at a few sites per protein – of chemical groups at precise locations for protein and biomaterial labeling, conjugation, and functionalization. Herein, we report the evolution of chromosomal Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (aaRS) for the alkyne-bearing uAA, 4-propargyloxy-l -phenylalanine (pPR), with ∼30-fold increased production of green fluorescent protein containing three instances of pPR compared with a previously described M. jannaschii-derived aaRS for pPR, when expressed from a single chromosomal copy. We show that when expressed from multicopy plasmids, the evolved aaRSs enable the production – using a genomically recoded Escherichia coli and the non-recoded BL21 E. coli strain – of elastin-like polypeptides (ELPs) containing multiple pPR residues in high yields. We further show that the multisite incorporation of pPR in ELPs facilitates the rapid, robust, and nontoxic fluorescent labeling of these proteins in bacteria. The evolved variants described in this work can be used to produce a variety of protein and biomaterial conjugates and to create efficient minimal tags for protein labeling.  相似文献   

19.
The universal N6-threonylcarbamoyladenosine (t6A) modification occurs at position 37 of tRNAs that decipher codons starting with adenosine. Mechanistically, t6A stabilizes structural configurations of the anticodon stem loop, promotes anticodon–codon pairing and safeguards the translational fidelity. The biosynthesis of tRNA t6A is co-catalyzed by two universally conserved protein families of TsaC/Sua5 (COG0009) and TsaD/Kae1/Qri7 (COG0533). Enzymatically, TsaC/Sua5 protein utilizes the substrates of L-threonine, HCO3/CO2 and ATP to synthesize an intermediate L-threonylcarbamoyladenylate, of which the threonylcarbamoyl-moiety is subsequently transferred onto the A37 of substrate tRNAs by the TsaD–TsaB –TsaE complex in bacteria or by the KEOPS complex in archaea and eukaryotic cytoplasm, whereas Qri7/OSGEPL1 protein functions on its own in mitochondria. Depletion of tRNA t6A interferes with protein homeostasis and gravely affects the life of unicellular organisms and the fitness of higher eukaryotes. Pathogenic mutations of YRDC, OSGEPL1 and KEOPS are implicated in a number of human mitochondrial and neurological diseases, including autosomal recessive Galloway–Mowat syndrome. The molecular mechanisms underscoring both the biosynthesis and cellular roles of tRNA t6A are presently not well elucidated. This review summarizes current mechanistic understandings of the catalysis, regulation and disease implications of tRNA t6A-biosynthetic machineries of three kingdoms of life, with a special focus on delineating the structure–function relationship from perspectives of conservation and diversity.  相似文献   

20.
The genetic code in most organisms codes for 20 proteinogenic amino acids or translation stop. In order to encode more than 20 amino acids in the coding system, one of stop codons is usually reprogrammed to encode a non‐proteinogenic amino acid. Although this approach works, usually only one amino acid is added to the amino acid repertoire. In this study, we incorporated non‐proteinogenic amino acids into a protein by using a sense codon. As all the codons are allocated in the universal genetic code, we destroyed all the tRNAArg in a cell‐free protein synthesis system by using a tRNAArg‐specific tRNase, colicin D. Then by supplementing the system with tRNACCU, the translation system was partially restored. Through this creative destruction, reprogrammable codons were successfully created in the system to encode modified lysines along with the 20 proteinogenic amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号