首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Lead-free inorganic halide perovskites have triggered appealing interests in various energy-related applications including solar cells and photocatalysis. However, why perovskite-structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3Bi2Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3Bi2Br9 to Cs2AgBiBr6, which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co-operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2AgBiBr6 more dispersible, eliminating the strong localization of electron–hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100-fold enhancement in photocatalytic performances compared with pristine Cs3Bi2Br9, verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion.  相似文献   

2.
Perovskite structured CsPbX3 (X = Cl, Br or I) quantum dots (QDs) have attracted great attention in the past few years for appealing application potentials in photovoltaic and optoelectronic devices. In this report, the CsPbX3 QDs are shown to perform as a new probe for metal ions with high sensitivity, high selectivity and instant response by the quenching or enhancing of the photoluminescence (PL). Through experimental and calculation efforts, the probing mechanisms are investigated. A wide probing window for Cu2+ and Yb3+ ions ranging from 2 × 10?9 to 2 × 10?6m is exhibited for CsPbBr3 QDs. In practice, the CsPbBr3 QDs are successfully applied for fast probing Cu2+ ions in edible oils and vehicle lubricating oils with the precision consistent to the values measured by inductively coupled plasma (ICP). Thus, it provides a promising powerful tool in detecting certain metal ions in biological and industrial organic solution systems.  相似文献   

3.
X-ray detectors are widely utilized in medical diagnostics and nondestructive product inspection. Halide perovskites are recently demonstrated as excellent candidates for direct X-ray detection. However, it is still challenging to obtain high quality perovskites with millimeter-thick over a large area for high performance, stable X-ray detectors. Here, methylammonium bismuth iodide (MA3Bi2I9) polycrystalline pellets (PPs) are developed by a robust, cost effective, and scalable cold isostatic-pressing for fabricating X-ray detectors with low limit of detection (LoD) and superior operational stability. The MA3Bi2I9-PPs possess a high resistivity of 2.28 × 1011 Ω cm and low dark carrier concentration of ≈107 cm−3, and balanced mobility of ≈2 cm2 V−1 s−1 for electrons and holes. These merits enable a sensitivity of 563 μC Gyair−1 cm−2, a detection efficiency of 28.8%, and an LoD of 9.3 nGyair s−1 for MA3Bi2I9-PPs detectors, and the LoD is much lower than the dose rate required for X-ray diagnostics used currently (5.5 μGyair s−1). In addition, the MA3Bi2I9-PPs detectors work stably under high working bias field up to 2000 V cm−1 after sensing an integrated dose >320 Gyair with continuous X-ray radiation, demonstrating its competitive advantage in practical application. These findings provide an approach to explore a new generation of low LoD, stable and green X-ray detectors based on MA3Bi2I9-PPs.  相似文献   

4.
Metal halide perovskites (MHPs) have emerged as promising emitters because of their excellent optoelectronic properties, including high photoluminescence quantum yields (PLQYs), wide‐range color tunability, and high color purity. However, a fundamental limitation of MHPs is their low exciton binding energy, which results in a low radiative recombination rate and the dependence of PLQY on the excitation intensity. Under the operating conditions of light‐emitting diodes (LEDs), the injected current densities are typically lower than the trap density, leading to a low actual PLQY. Moreover, the defects not only initiate the decomposition of MHPs caused by extrinsic factors, but also intrinsically stimulate ion migration across the interface and lead to the corrosion of electrodes due to interaction between those electrodes, even under inert conditions. The passivation of defects has proven to be effective for mitigating the effects of defects in MHPs. Herein, the origins and theoretical calculations of the defect tolerance in MHPs and the impact of defects on both the performance and stability of perovskite LEDs are reviewed. The passivation methods and materials for MHP bulk films and nanocrystals are discussed in detail. Based on the currently reported advances, specific requirements and future research directions for display applications are suggested.  相似文献   

5.
6.
Following the unprecedented rise in photovoltaic power conversion efficiencies during the past five years, metal‐halide perovskites (MHPs) have emerged as a new and highly promising class of solar‐energy materials. Their extraordinary electrical and optical properties combined with the abundance of the raw materials, the simplicity of synthetic routes, and processing versatility make MHPs ideal for cost‐efficient, large‐volume manufacturing of a plethora of optoelectronic devices that span far beyond photovoltaics. Herein looks beyond current applications in the field of energy, to the area of large‐area electronics using MHPs as the semiconductor material. A comprehensive overview of the relevant fundamental material properties of MHPs, including crystal structure, electronic states, and charge transport, is provided first. Thereafter, recent demonstrations of MHP‐based thin‐film transistors and their application in logic circuits, as well as bi‐functional devices such as light‐sensing and light‐emitting transistors, are discussed. Finally, the challenges and opportunities in the area of MHPs‐based electronics, with particular emphasis on manufacturing, stability, and health and environmental concerns, are highlighted.  相似文献   

7.
2D hybrid halide perovskites with the formula (A′)2(A)n-1PbnI3n+1 have remarkable stability and promising efficiency in photovoltaic and optoelectronic devices, yet fundamental understanding of film formation, key to optimizing these devices, is lacking. Here, in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) is used to monitor film formation during spin-coating. This elucidates the general film formation mechanism of 2D halide perovskites during one-step spin-coating. There are three stages of film formation: sol–gel, oriented 3D, and 2D. Three precursor phases form during the sol–gel stage and transform to perovskite, first giving a highly oriented 3D-like phase at the air/liquid interface followed by subsequent nucleations forming slightly less oriented 2D perovskite. Furthermore, heating before crystallization leads to fewer nucleations and faster removal of the precursors, improving orientation. This outlines the primary causes of phase distribution and perpendicular orientation in 2D perovskite films and paves the way for rationally designed film fabrication techniques.  相似文献   

8.
Anti-counterfeiting techniques have become a global topic since they is correlated to the information and data safety, in which multimodal luminescence is one of the most desirable candidates for practical applications. However, it is a long-standing challenge to actualize robust multimodal luminescence with high thermal stability and humid resistance. Conventionally, the multimodal luminescence is usually achieved by the combination of upconversion and downshifting luminescence, which only responds to the electromagnetic waves in a limited range. Herein, the Yb3+/Er3+/Bi3+ co-doped Cs2Ag0.6Na0.4InCl6 perovskite material is reported as an efficient multimodal luminescence material. Beyond the excitation of ultraviolet light and near-infrared laser (980 nm), this work extends multimodal luminescence to the excitation of X-ray. Besides the flexible excitation sources, this material also shows the exceptional luminescence performance, in which the X-ray detection limit reaches the level of nGy s−1, indicating a great potential for further application as a colorless pigment in the anti-counterfeiting field. More importantly, the obtained double perovskite features high stability against both humidity and temperature up to 400 °C. This integrated multifunctional luminescent material provides a new directional solution for the development of multifunctional optical materials and devices.  相似文献   

9.
Lead‐(Pb‐) halide perovskite nanocrystals (NCs) are interesting nanomaterials due to their excellent optical properties, such as narrow‐band emission, high photoluminescence (PL) efficiency, and wide color gamut. However, these NCs have several critical problems, such as the high toxicity of Pb, its tendency to accumulate in the human body, and phase instability. Although Pb‐free metal (Bi, Sn, etc.) halide perovskite NCs have recently been reported as possible alternatives, they exhibit poor optical and electrical properties as well as abundant intrinsic defect sites. For the first time, the synthesis and optical characterization of cesium ytterbium triiodide (CsYbI3) cubic perovskite NCs with highly uniform size distribution and high crystallinity using a simple hot‐injection method are reported. Strong excitation‐independent emission and high quantum yields for the prepared NCs are verified using photoluminescence measurements. Furthermore, these CsYbI3 NCs exhibit potential for use in organic–inorganic hybrid photodetectors as a photoactive layer. The as‐prepared samples exhibit clear on–off switching behavior as well as high photoresponsivity (2.4 × 103 A W?1) and external quantum efficiency (EQE, 5.8 × 105%) due to effective exciton dissociation and charge transport. These results suggest that CsYbI3 NCs offer tremendous opportunities in electronic and optoelectronic applications, such as chemical sensors, light emitting diodes (LEDs), and energy conversion and storage devices.  相似文献   

10.
Quantum cutting can realize the emission of multiple near‐infrared photons for each ultraviolet/visible photon absorbed, and has potential to significantly improve the photoelectric conversion efficiency (PCE) of solar cells. However, due to the lack of an ideal downconversion material, it has merely served as a principle in the laboratory until now. Here, the fabrication of a novel type of quantum cutting material, CsPbCl1.5Br1.5:Yb3+, Ce3+ nanocrystals is presented. Benefiting from the larger absorption cross‐section, weaker electron–phonon coupling, and higher inner luminescent quantum yield (146%), the doped perovskite nanocrystals are successfully explored as a downconverter of commercial silicon solar cells (SSCs). Noticeably, the PCE of the SSCs is improved from 18.1% to 21.5%, with a relative enhancement of 18.8%. This work exhibits a cheap, convenient, and effective way to enhance the PCE of SSCs, which may be commercially popularized in the future.  相似文献   

11.
12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号