首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mean annual flow of the lower Ebro river has reduced by 29% during this century (592 to 426 m3 s−1). The main causes are increased water use and evaporation from reservoirs in the river basin. The losses due to irrigation explain 74% of the decrease, whereas losses by evaporation in the reservoirs explain another 22%. Decreased flow in the lower Ebro river caused an increase in the salt wedge in the estuary. During the study period, the permanent low river flows from July 1988 to April 1990 caused the continuous presence of the salt wedge for 18 months. Historical data for sediment transport in the Ebro river are scarce and incomplete. Limited data before the construction of reservoirs in the Ebro basin allow only an estimate of the order of magnitude of annual suspended sediment transport (3·0 × 107 Mt yr−1). Before the construction of large reservoirs in the lower Ebro at the end of the 1960s, the sediment transport was estimated to be around 1·0 × 107 Mt yr−1. This amount was reduced to around 0·3 × 106 Mt yr−1 after construction of the dam. Currently, this amount ranges from 0·1 to 0·2 × 106 Mt yr−1, which represents a reduction of more than 99% in sediment transport. On a seasonal scale, the effects of the dams have been the standardization of the river flow and the virtual suppression of peaks in sediment transport. In the estuary, the salt wedge dynamics changed and its presence increased. River regulation and hydropower generation also changed the hydrology of the river on a daily scale. The effect of local storms on the river flow and the sediment transport has been suppressed. At present, these changes are related to hydropower generation.  相似文献   

2.
Sediment flushing may be effective to tackle the loss of reservoir storage as a result of siltation. When operationally possible, the impact of this practice on the downstream aquatic environment can be mitigated by limiting the sediment concentration of the discharged waters (controlled sediment flushing). However, this topic is poorly documented, and concerns arise when limits are discussed. We present the results of a 3‐year field investigation concerning the controlled sediment flushing of a small reservoir on the Adda River, the main tributary of Lake Como—Italy. Two limits for suspended solid concentration (SSC) were adopted: 1.5 g L?1, as average value throughout the whole working day, and 3.0 g L?1, as alert threshold to adjust the ongoing activity. These constraints were essentially fulfilled in the course of the documented operations. The first year sediment flushing was more significant than the following year: 25 000 tons of fines below 2 mm in diameter were flushed in six non‐consecutive days in summer 2010, while, one year earlier, 75 000 tons were flushed in 16 non‐consecutive days. In the third year of investigation (2011), no sediment evacuation took place. The benthic macroinvertebrate and the fish communities were surveyed a short distance below the reservoir, that is, in the potentially more affected river reach. Clear pieces of evidence of environmental quality degradation were not detected; the adopted strategies can therefore be considered to be appropriate when planning sediment flushing management in comparable contexts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The Catamaran Brook Habitat Research Project is a 15‐year investigation of river processes and potential impacts of forestry activities on Atlantic salmon (Salmo salar) and its freshwater lotic habitats. Suspended sediments have been sampled in Catamaran Brook and its tributaries from 1990 to 1997. Data on total event precipitation and hourly peak discharge were related to suspended sediment concentration (SSC) under different catchment conditions (dry vs. wet) and treatment (absence or occurrence of timber harvesting). Although SSC generally showed a good correlation to total event precipitation and hourly peak discharge, there was no clear evidence that forestry operations were an important factor within the main Catamaran Brook during the timber harvesting year and the year that followed. Such was not the case for SSC in small tributaries draining directly from cut blocks during logging. In fact, the highest concentrations of suspended sediment were measured in small tributaries draining cut blocks during timber harvesting (with a maximum SSC of 404 mg L−1 in Tributary 1). Within the main Catamaran Brook, a dilution effect rapidly decreased these values downstream of affected tributaries. Processes related to the transfer of sediment to the streams are discussed. Potential improvements in river management and operational timing with respect to the timing of harvesting activities as it relates to precipitation, discharge, catchment conditions (dry vs. wet), freezing/thawing, and salmon migration are also discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Wenying Lake in Datong, China, has been drying for the last several years. Analysis of standard penetration test data revealed that a missing waterproof layer of silt soil and silty clay in the south part of the lake, resulting from frequent flood flushing, was responsible for the water loss from the lake. Accordingly, 6.7 × 105 m2 of geosynthetic clay liner (GCL) was used in May 2010 to repair the area of sediment exhibiting the water leakage, equivalent to 15.6% of the total lake bottom area. Approximately 4.1 × 106 m3 of floodwater was then diverted from upstream rivers to the lake. Eight months later, about 0.9 × 106 m3 of the water was retained, with the water loss being reduced from 4.0 to 1.1 m3 m?2 year?1. Ecologically safe and cost‐effective clay materials also can be used to furthermore improve the water retention characteristics. Modelling results indicated that capping the whole lake with a 2 cm layer of bentonite with a permeability coefficient of 5.0 × 10?9 cm s?1 could reduce the sediment water leakage to 0.04 m3 m?2 year?1. The quality of the retained water after GCL treatment project was poor, with a total nitrogen concentration of 11.0 mg L?1 and sulphate 307.0 mg L?1, which were 5 and 300 times higher, respectively, than the Chinese class V surface water standard. Restoration of aquatic vegetation in the lake and constructed wetlands near the lake inlets could be helpful to improve the lake’s water quality over the long term.  相似文献   

5.
渤海湾浮游细菌分布特征及环境影响因素   总被引:3,自引:0,他引:3  
于2011年5月、2012年5月和2012年11月分别对渤海湾33个站位表层水体中的浮游细菌及环境因子进行了调查,探讨渤海湾浮游细菌生态分布特征及其与环境影响因子的关系。结果表明:在渤海湾表层水体中,2011年5月的海洋浮游细菌丰度为(2. 51~28. 39)×108L-1,2012年5月的浮游细菌丰度为(2. 62~87. 26)×108L-1,2012年11月浮游细菌丰度为(2. 18~18. 15)×108L-1;浮游细菌数量在空间上都是近岸站位高于远岸站位; 2011年5月和2012年5月,浮游细菌生长所需有机碳分别来源于浮游植物胞外分泌的溶解有机碳和陆源输入有机碳,浮游细菌与氨氮都有极显著相关性关系,与磷酸盐均呈显著负相关关系; 2012年11月,浮游细菌除了与亚硝酸盐氮、水温呈正相关外,与其他环境因子都呈负相关关系。  相似文献   

6.
采用荧光定量PCR(real-time fluorescence quantitative polymerase chain reaction)和末端限制性片段长度多态性(terminal restriction fragment length polymorphism,T-RFLP)方法,对江苏7个湖泊沉积物中好氧氨氧化微生物进行分析,研究湖泊水体营养状态对沉积物好氧氨氧化微生物空间异质性的影响。综合营养指数分析结果表明,23个采样点中,61%的湖区为中营养状态,39%的湖区为轻度富营养状态。荧光定量PCR分析结果显示,每克底泥中氨氧化古菌(ammonia-oxidizing archaea,AOA)和氨氧化细菌(ammonia-oxidizing bacteria,AOB)amo A基因拷贝数虽然分别从中营养湖泊的3.91×10~6和3.82×10~6上升到轻度富营养湖泊的1.30×107和6.07×10~6,但湖泊水体营养状态并未显著影响沉积物AOA和AOB的丰度。T-RFLP分析结果表明,湖泊水体营养状态对AOA和AOB的优势种属及群落多样性也未产生显著影响。典范对应分析结果表明,湖泊水体营养盐浓度能解释AOA的群落结构差异的56.3%,而仅能解释27.2%的AOB的群落结构差异,TN和NO-3-N浓度是影响沉积物AOA分布异质性的主要环境因子,湖泊水体营养盐浓度比综合营养状态指数更能影响AOA和AOB的群落结构组成。  相似文献   

7.
The Lancang River, located in the upper reach of the Mekong River, has attracted worldwide attention for the large‐scale development of hydropower on its main stream, In the paper, taking Manwan dam as a case study, we adopt emergy analysis method for three ratio indices, i.e. the emergy yield ratio (EYR), environmental loading ratio (ELR) and ecosystem index for sustainability (EIS), to analyse the beneficial contribution of dam construction and operation (DCP) to regional social system, and environmental pressure as well as sustainability of river ecosystem (reservoir area and downstream channel). Different from traditional researches, the loss for ecosystem service of terrestrial ecosystem around reservoir (STER) as a significant cost is integrated into holistic analysis for ecological effect of Manwan dam construction (DC). The result show that the emergy yield of river ecosystem after Manwan DC is equal to 4.58 × 1021 sej/yr, of which the majority is from electricity generation (4.52 × 1021 sej/yr), i.e. 98.7% of the total emergy yield. The gross emergy cost of the ecosystem in the Manwan reservoir area is 6.75 × 1020 sej/yr, with the primary one being derived from sediment deposition (3.72 × 1020 sej/yr), which accounts for 55.11% of the total emergy cost. The loss of STER (1.71 × 1020 sej/yr) follows and accounts for 25.33% of the total emergy cost. We conclude that no matter whether sediments and the loss of STER are included or not, EYR of present system after DC is higher than that of former system without DC, indicating that hydropower exploitation plays an important role in improvement of the emergy yield of regional system. However, the sediment deposition and loss of STER would result in a much higher environmental pressure (increased by 44.53 times) and a lower sustainability (the index decreased by 14.43 times) to the present system. Especially, this is an underestimated conclusion due to the limitation of data available without considering the emergy loss of ecological heritage and hydrological process as well as river continuum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Treating the ballast water of oceanic vessels with a biocide is one potential management strategy to reduce the number of nonindigenous species released into the Laurentian Great Lakes from NOBOB (no ballast on board) vessels. To evaluate biocide effectiveness, glutaraldehyde, a five-carbon dialdehyde widely used for its antimicrobial properties, was investigated. Biocide effectiveness was assessed for various organisms using 24 h acute toxicity bioassays in water-only and water-sediment environments. Acute studies indicate a 24 h LC90 value of 100 mg glutaraldehyde L–1 or less for most of the freshwater organisms tested. The main exception was the freshwater amphipod, Hyalella azteca, which was much more resistant to glutaraldehyde (24 h LC90 = 550 mg glutaraldehyde L−1; 95% CI: 476–681). Biocide efficacy was also evaluated in water-sediment exposures. The presence of a test sediment (3% organic carbon) greatly increased lethal concentration estimates for the oligochaete Lumbriculus variegatus, but not for H. azteca: The 24 h LC90 for L. variegatus varied depending on the water-sediment ratio, and ranged from 61 mg glutaraldehyde L−1 (95% CI 52–78) for an 8:1 water-sediment ratio to 356 mg glutaraldehyde L−1 (95% CI 322–423) for a 2:1 water-sediment ratio. This indicates that the amount of sediments present in NOBOB vessels may have a significant impact on biocide efficacy. Experiments using material from actual NOBOB vessels generally corroborated data from the water-sediment experiments and suggest a potential treatment concentration of approximately 500 mg glutaraldehyde L−1 for short exposure periods (e.g., 24 h).  相似文献   

9.
The ability to understand and predict the impacts of dam removal in river systems is important, especially as dam decommissioning is becoming increasingly popular. In this study, we document the morphological and sediment impact of the removal of Chijiawan Check Dam in May 2011; a 13‐m‐high dam located on a coarse‐grained, steep mountain river channel in Taiwan. An estimated 0.2 million m3 of sediment had accumulated within the impoundment before its removal. Longitudinal and bankfull cross‐sectional surveys and a detailed sediment textural survey were undertaken along a 3.2‐km study reach of the Chijiawan Creek between 2010 and 2012. A rotating knickpoint with migration rates of up to 22 m/day was observed along the study reach, following dam removal. The rate and character of channel change, associated with the dam removal, appear to be driven as much by channel morphology and distance from the dam as by the hydrology variability. Our results suggested that relatively small amounts of sediment were eroded during the first 3 weeks following dam removal because of low discharge conditions. However, after 1 and 15 months, 10 and 75% of the sediment that had accumulated within former impounded was eroded, respectively. Sites near the former dam had a sediment texture that reflected the transport of released sediment, and this suggested that basin‐wide sediment processes exerted a strong influence. The removal of Chijiawan Dam offers unique insight on how sediment processes can drive river channel responses to sediment pulses may vary with discharge and sediment load, in areas subject to remarkably high flows and sediment loads. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Dam sediment flushing can reduce reservoir sedimentation and deliver sediments to the downstream rivers. However, deceased fishes are often found in the Yellow River during the period of reservoir sediment flushing. To study the acute impacts of flushing and quantify threshold conditions for fish protection, field surveys and laboratory experiments were carried out during periods of sediment flushing. Field surveys in 2010 showed that dissolved oxygen (DO) decreased rapidly with the increase in suspended sediment concentration (SSC) and that deceased fishes involved 10 species. With the model of the severity of ill effects, the sediment flushing in 2010 was estimated to cause fish mortality of 0–20%. To study the lethal effect on fishes under controlled SSC conditions, laboratory experiments were performed with carp (Cyprinus carpio) exposed in water containing different SSCs. It is concluded that the high sediment concentration (average value of 90788 mg/l), fine particles (grain size < 0.075 mm), a long flushing duration (>2 days), and DO reduction (<2 mg/l) contribute to the deaths of fishes during the flushing period in 2010. To decrease lethal effects, the upper limits of SSC and duration are recommended as the peak SSC value of 55 000 mg/l and average value of 32 000 mg/l for the entire flushing period for flushing operations. The measures of SSC control and refuge construction are suggested for eco-friendly management.  相似文献   

11.
灞河流域气候因子对水沙变化的影响   总被引:1,自引:0,他引:1  
利用灞河流域蓝田气象站和马渡王水文站1960—2012年的气象、水文实测资料,分析灞河流域气候及水沙变化规律,同时运用相关性分析、灰色关联分析、多元线性回归模型等多种方法探讨了该流域水沙变化与气候变化的关系。结果表明:灞河流域降雨量、蒸发量、径流量和输沙量皆呈显著下降趋势,而气温呈上升趋势;降雨量与水沙都有重要的相关关系,1960—1990年影响径流量的气候因子敏感度由大至小依次为降雨量、气温、蒸发量,而1991—2012年则为降雨量、蒸发量、气温,当气温和蒸发量不变时,降雨量每增加1 mm,两阶段的年径流量分别增加0.14亿m3和0.08亿m3;1960—2012年影响输沙量的气候因子敏感度由大至小依次为降雨量、气温、蒸发量,当气温和蒸发量不变时,降雨量每增加1 mm,年输沙量增加0.668万t。  相似文献   

12.
Fine sediment (<63 µm) storage in river channels frequently represents a significant term in catchment sediment budgets and plays an important role in diffuse pollution problems. A combination of a sediment remobilization technique and the fingerprinting approach was used to examine the storage and provenance of fine sediment on the channel bed of two contrasting lowland permeable catchments in the UK. In the upper Tern (∼231 km2) study catchment, estimates of mean fine sediment storage on the channel bed ranged between 860–5500 g m−2, with an overall average of 2391 g m−2, compared to 470–2290 g m−2 and 1065 g m−2 in the Pang (∼166 km2) and 770–1760 g m−2 and 1255 g m−2 in the Lambourn (∼234 km2) sub‐catchments. Mean total fine sediment storage on the bed of the main channel was equivalent to 37% (upper Tern), 38% (Pang) and 21% (Lambourn) of the mean annual suspended sediment loads measured at the catchment outlets. Over the study period, the total gain (1427 t) and loss (1877 t) to fine sediment storage on the channel bed in the upper Tern catchment were equivalent to 82% and 108% of the mean annual suspended sediment load, respectively, compared to 149% (740 t) and 136% (678 t) in the Pang sub‐catchment, and 39% (422 t) and 49% (528 t) in the Lambourn sub‐catchment. The source of the fine sediment stored on the channel bed within each study area varied. In the upper Tern catchment, the weighted mean relative contributions from individual source types were estimated to be 35 ± 5% (pasture), 51 ± 5% (cultivated) and 14 ± 3% (channel banks and subsurface sources). The corresponding estimates were 49 ± 8%, 33 ± 5% and 18 ± 5% for the Pang sub‐catchment, compared to 19 ± 6%, 64 ± 5% and 17 ± 5% for the Lambourn sub‐catchment. These sediment source estimates have important implications for the design and implementation of targeted sediment control policies within the study areas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The Burgomillodo Dam, located in the middle Rio Duraton (north Spain, Duero Basin), has created a small eutrophic reservoir with a capacity of 15 × 106 m 3 and a maximum depth of 40m. Burgomillodo Reservoir is solely used for producing hydroelectric power. The regulated flow pattern of hypolimnial waters is characterized by higher daytime flows than those by night, with low flows at weekends all the year round. The environmental impact generated by this hydropower scheme on the river downstream was assessed by comparing physiochemical characteristics and aquatic communities of an upstream site (reference station) with those of three downstream stations, which were located 0–2, 2–5, and 7–6 km below the dam. Water temperature, pH and dissolved oxygen were significantly lower downstream from the reservoir. Hardness, alkalinity, suspended inorganic matter, and conductivity had reduced annual variability below the dam. Photosynthetic activity was directly involved in the recovery of dissolved oxygen and pH values. Species richness and abundance of macrophytes increased just below the dam. Macrobenthic and fish communities were composed of higher numbers of potamic species. Number of taxa, density, biomass, and diversity were higher at the reference site, recovering their values as the distance below the reservoir increased. Macrobenthic trophic structure was changed by an increase in predators and filter feeders and a decrease in shredders. Environmental impact values for the macrobenthic community living just below the dam were higher than those for the fish community. It is concluded that the main physiochemical factors involved in environmental impacts were dissolved oxygen deficit and short-term flow fluctuations for the macrobenthic community, and oxygen deficit for the fish fauna. Benthic macroinvertebrates appear to be the best aquatic organisms for detecting changes and for reflecting the spatial recovery of environmental conditions.  相似文献   

14.
Lake Naivasha is a freshwater lake with no surface outlet, lying within a closed basin of the Kenyan Rift Valley. It is perceived to be a lake undergoing anthropogenic stresses. This study is intended to determine the speciation of some selected heavy metals in the sediments of Lake Naivasha, as an indicator of potential pollution of the lake. Sediment and water sampling of the lake was conducted in March and May 2003, during the dry and wet seasons, respectively. Analyses of the speciation of heavy metals in sediment samples (<63 µm faction) were performed on sediment samples collected from five sites within the lake. The study results obtained indicated that influent Malewa River was not a source of labile copper (Cu), lead (Pb) or zinc, despite the river having the highest percentage clay content during the wet season (86%). Copper was highly distributed in the residual sediment fraction (average of 90%). Among the labile sediment factions, the highest quantity of Cu was in the oxidizable phase (3.58 and 2.30 µg g−1 during the dry and wet season, respectively). Carbonate‐bound Cu was sparingly distributed during both the dry and the wet seasons, ranging between 0.74 and 1.81 µg g−1. Iron was highly distributed in the oxidizable sediment phase, exhibiting concentrations ranging between 2.0 and 6.0 (×103) µg g−1. Relative to the other heavy metals, manganese was distributed in lower proportions in the residual sediment fraction. High concentrations of Pb were observed in the oxidizable phase from most of the sampling sites along the lake shore. Zinc was distributed largely in the oxidizable phase, being highest at sampling site SS, which was located near a municipal sewage input to the lake. The sediments collected at the sampling sites located in the deep portion of the lake exhibited the highest concentrations of labile heavy metals.  相似文献   

15.
Evolution of the paradigm regarding the relative importance of allochthonous and autochthonous sources of organic matter in aquatic systems has rekindled interest in the role of bacteria in energy transfer. The development of material budget calculations characterizing conditions of net heterotrophy requires knowledge of spatiotemporal dynamics in the bacterial community. Here we present results from three years of measurement of bacterioplankton abundance and production at three locations on the south shore of Lake Superior. In general, bacterial numbers (0.63 × 106 ± 0.29 × 106 cells·mL−1) and production (0.037 ± 0.055 mgC·m−3·hr−1) were comparable to those reported previously for Lake Superior and were consistent with the system's place along the trophic gradient. Interannual differences in abundance and production were apparently related to the timing and magnitude of seasonal phytoplankton dynamics. There was no inter-transect variation or systematic nearshore-offshore gradients in bacterial activity despite substantial differences in proximity to sources of terrigenous materials (between transects) and in phytoplankton biomass (with distance offshore). The most striking signals in bacterial activity were those evidenced by peaks in bacterial production associated with the deep chlorophyll maximum and with the decline in the phytoplankton community with the approach to turnover. It is hypothesized that bacterioplankton activity in Lake Superior exists in a near steady state, fueled by labile organic matter produced through phytoplankton excretion and the photolytic processing of refractory terrigenous materials. Superimposed on this rather stable signal are peaks in bacterial production apparently related to senescence of the phytoplankton community and, perhaps, the generation of nutrients by the grazing community.  相似文献   

16.
Implementation of the water-sediment regulation (WSR) scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distribution and coastal morphology of the Yellow River Estuary. Using coastline delineation and suspended sediment concentration (SSC) retrieval methods, this study investigated water and sediment changes, identified detailed inter-annual and intra-annual variations of the coastline and SSC in the normal period (NP: 1986–2001, before and after the flood season) and WSR period (WSRP: 2002–2013, before and after WSR). The results indicate that (1) the sedimentation in the low reaches of the Yellow River turned into erosion from 2002 onward; (2) the inter-annual coastline changes could be divided into an accretion stage (1986–1996), a slow erosion stage (1996–2002), and a slow accretion stage (2002–2013); (3) an intra-annual coastline extension occurred in the river mouth in most years of the WSRP; and (4) the mean intra-annual accretion area was 0.789 km2 in the NP and 4.73 km2 in the WSRP, and the mean SSC increased from 238 mg/L to 293 mg/L in the NP and from 192 mg/L to 264 mg/L in the WSRP.  相似文献   

17.
The Xiaolangdi Hydro-Project is one of the large projects on the main stem of the Middle Yellow River.It has been operated for more than 10 years,since its impoundment in October,1999.The reservoir has trapped 2.833×109 m3 of sediment,and caused the total erosion of 1.891×109 t in the Lower Yellow River from October,1999 through October,2010.Not only the serious atrophied situation of the Lower Yellow River(LYR) has been resuscitating,but also many new phenomena of sediment transport and behaviors of channel re-establishing are coming into being.They are illustrated and discussed in detail in this paper.  相似文献   

18.
The construction of a dam converts the natural streamflow to human control. It is necessary to learn the accumulated effect of cascade dams on hydrological characteristics, sediment and nutrient pollution discharge. The current research describes the analysis and simulation of streamflow, sand concentration and nutrient pollutant discharge alterations caused by the construction of a cascade of eight dams along the Longliu section of the upper stream of the Yellow River. The analysis shows that the maximum monthly streamflow difference between the inlet and outlet of the Longliu section decreased from 430 to 115 m3/s, after the appearance of the cascade dams between 1977 and 2006. In the same period, the correlation coefficient (R 2) of monthly streamflow between the inlet and outlet of Longliu dropped from 0.959 to 0.375. The peak of streamflow shifted from June to May and October. The difference in sand concentration between two sections decreased from 0.52 to 0.39 kg/m3, which was the direct consequence of the operation of the reservoirs. The R 2 value of sand concentrations of the inlet and outlet were also reduced from 0.504 to 0.356. A t-test analysis indicates that the original hydrological nature was significantly disturbed by the cascade dams. The influence of the dams on nutrient pollutant transport was simulated by the SWAT model. This simulation suggests that the cascade dams decreased the discharge of total nitrogen and total phosphorus from 15.4 × 103 t and 1,996 t to 0.4 × 103 t and 328 t, respectively. In conclusion, the accumulated impact of cascade dams on streamflow, sand concentration and nutrient pollutant discharge were analyzed, which were helpful for understanding the environmental features of the entire watershed.  相似文献   

19.
The Cernadilla reservoir, located on the River Tera (northwest Spain, Duero Basin) is an oligotrophic reservoir with a capacity of more than 250 × 106m3 and a depth of 70 m. The regulated flow pattern is characterized by higher summer flows, higher day flows than night ones, and lower weekend flows. The effects of this artificial flow regime on the stream ecosystem were evaluated by comparing the aquatic communities of an upstream station with those of three downstream stations, located at 1, 8, and 24 km from the dam. Physiocochemical characteristics of the water, fish and macrobenthic communities, and macrophytes were studied at each station. Summer water temperatures were significantly lower downstream of the reservoir. Macrophyte biomass, macrobenthic diversity, and richness were reduced below the dam. The trophic structure was changed by an increase of shredders and grazers. Fishery total biomass greatly fluctuated seasonally, but was higher above the reservoir than below it. However, in spring the trout populations were higher upstream because large numbers of spawning cyprinids from the reservoir invaded upstream reaches of the River Tera and displayed resident trout populations.  相似文献   

20.
Impoundment effects override natural, reach-based channel geomorphology influences on seasonal waterbird distribution in Grand Canyon along the Colorado River downstream from Glen Canyon Dam. Large winter waterbird populations were rare or non-existent prior to completion of Glen Canyon Dam in 1963, and pre-dam summer breeding was rare. Post-dam river corridor surveys of 13 geomorphological reaches from 1973 to 1994 detected 58 species of waterfowl, waders, shorebirds and piscivorous raptors, with a grand mean of 138·2 waterbirds/reach (SE=31·0, n=727 reach surveys), and a mean area-adjusted rate of encounter (AARE) of 372·8 waterbirds km−1 h−1 of observation per reach (SE=69·1). The post-dam assemblage has been dominated by Anseriformes (13 diving and 12 dabbling species) and includes regionally significant populations of wintering waterfowl and bald eagle, and breeding mallard. Most wading birds and shorebirds occur primarily as migrants or summer vagrants. Total waterbird AARE was greatest in the productive clear water (CW) and variably turbid (VT) segments upstream from the Little Colorado River (LCR) (km 98), decreasing downstream on the usually turbid (UT) lower Grand Canyon segment. Mean total winter waterfowl AARE was 1076·8, and decreased by three orders of magnitude from the CW to the UT segments (p=0·0001). Mean total summer AARE was 2·7, and also decreased across the turbidity segments (p=0·066). In contrast, AARE varied little between wide and narrow geomorphological reaches. Total AARE was only 1·4 and 1·3-fold greater in wide versus narrow reaches within the VT and UT turbidity segments, respectively (p<0·0002). Winter AARE was threefold greater (p=0·0002), while summer AARE was equivalent between wide and narrow reaches. These tributary-related turbidity and geomorphological reach width factors contributed to a non-linear, circuitous shift in the waterbird assemblage over distance downstream from the dam, differentially affecting the seasonal distribution of waterbird feeding guilds. We discuss flow regulation and habitat management implications. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号