首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colloidal quantum wells (CQWs) are regarded as a highly promising class of optoelectronic materials, thanks to their unique excitonic characteristics of high extinction coefficients and ultranarrow emission bandwidths. Although the exploration of CQWs in light-emitting diodes (LEDs) is impressive, the performance of CQW-LEDs lags far behind other types of soft-material LEDs (e.g., organic LEDs, colloidal-quantum-dot LEDs, and perovskite LEDs). Herein, high-efficiency CQW-LEDs reaching close to the theoretical limit are reported. A key factor for this high performance is the exploitation of hot-injection shell (HIS) growth of CQWs, which enables a near-unity photoluminescence quantum yield (PLQY), reduces nonradiative channels, ensures smooth films, and enhances the stability. Remarkably, the PLQY remains 95% in solution and 87% in film despite rigorous cleaning. Through systematically understanding their shape-, composition-, and device-engineering, the CQW-LEDs using CdSe/Cd0.25Zn0.75S core/HIS CQWs exhibit a maximum external quantum efficiency of 19.2%. Additionally, a high luminance of 23 490 cd m−2, extremely saturated red color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.715, 0.283), and stable emission are obtained. The findings indicate that HIS-grown CQWs enable high-performance solution-processed LEDs, which may pave the path for future CQW-based display and lighting technologies.  相似文献   

2.
This paper reports the synthesis and electroluminescent properties of a series of blue emitting materials with arylamine and diphenylvinylbiphenyl groups for applications to efficient blue organic light-emitting diodes (OLEDs). All devices exhibited blue electroluminescence with electroluminescent properties that were quite sensitive to the structural features of the dopants in the emitting layers. In particular, the device using dopant 4 exhibited sky-blue emission with a maximum luminance, luminance efficiency, power efficiency, external quantum efficiency and CIE coordinates of 39,000 cd/m2, 12.3 cd/A, 7.45 lm/W, 7.71% at 20 mA/cm2 and (x = 0.17, y = 0.31) at 8 V, respectively. In addition, a blue OLED using dopant 2 with CIE coordinates (x = 0.16, y = 0.18) at 8 V exhibited a luminous efficiency, power efficiency and external quantum efficiency of 4.39 cd/A, 2.46 lm/W and 2.97% at 20 mA/cm2, respectively.  相似文献   

3.
The rolling-off phenomenon of device efficiency at high current density caused by quenching of luminescence in perovskite light-emitting diodes (PeLED) is challenging to be solved. Here, 2-amino-5-iodopyrazine (AIPZ) is dissolved in a mixed solvent of chlorobenzene (CB)/isopropanol (IPA) (7:3 volume ratio) for surface post-treatment of FAPbI3 perovskite film. The interaction of AIPZ and perovskite surface not only balances the charge injection but also passivates defects to enhance radiative recombination in PeLED. Therefore, the PeLED champion yields peak external quantum efficiency reaching 23.2% at the current density of 45 mA cm−2 with a radiance brightness of 290 W sr−1 m−2. More importantly, the rolling-off of device efficiency is significantly reduced. The lowest rolling-off devices can maintain 80% of peak EQE (22.1%) at a high current density of 460 mA cm−2, whereas the control device only retains 25% of the peak EQE value. This work provides an effective strategy to improve performance and reduce the EQE rolling-off of PeLED for practical application.  相似文献   

4.
The use of colloidal quantum dots (CQDs) as a gain medium in infrared laser devices has been underpinned by the need for high pumping intensities, very short gain lifetimes, and low gain coefficients. Here, PbS/PbSSe core/alloyed-shell CQDs are employed as an infrared gain medium that results in highly suppressed Auger recombination with a lifetime of 485 ps, lowering the amplified spontaneous emission (ASE) threshold down to 300 µJ cm−2, and showing a record high net modal gain coefficient of 2180 cm−1. By doping these engineered core/shell CQDs up to nearly filling the first excited state, a significant reduction of optical gain threshold is demonstrated, measured by transient absorption, to an average-exciton population-per-dot 〈Nthg of 0.45 due to bleaching of the ground state absorption. This in turn have led to a fivefold reduction in ASE threshold at 〈NthASE = 0.70 excitons-per-dot, associated with a gain lifetime of 280 ps. Finally, these heterostructured QDs are used to achieve near-infrared lasing at 1670 nm at a pump fluences corresponding to sub-single-exciton-per-dot threshold (〈NthLas = 0.87). This work brings infrared CQD lasing thresholds on par to their visible counterparts, and paves the way toward solution-processed infrared laser diodes.  相似文献   

5.
High electrochemical polarization during a redox reaction in the electrode of aqueous zinc–bromine flow batteries largely limits its practical implementation as an effective energy storage system. This study demonstrates a rationally-designed composite electrode that exhibits a lower electrochemical polarization by providing a higher number of catalytically-active sites for faster bromine reaction, compared to a conventional graphite felt cathode. The composite electrode is composed of electrically-conductive graphite felt (GF) and highly active mesoporous tungsten oxynitride nanofibers (mWONNFs) that are prepared by electrospinning and simple heat treatments. Addition of the 1D mWONNFs to porous GF produces a web-like structure that significantly facilitates the reaction kinetics and ion diffusion. The cell performance achieves in this study demonstrated high energy efficiencies of 89% and 80% at current densities of 20 and 80 mA cm−2, respectively. Furthermore, the cell can also be operated at a very high current density of 160 mA cm−2, demonstrating an energy efficiency of 62%. These results demonstrate the effectiveness of the mWONNF/GF composite as the electrode material in zinc–bromine flow batteries.  相似文献   

6.
The performance of lead-halide perovskite light-emitting diodes (LEDs) has increased rapidly in recent years. However, most reports feature devices operated at relatively small current densities (<500 mA cm−2) with moderate radiance (<400 W sr−1 m−2). Here, Joule heating and inefficient thermal dissipation are shown to be major obstacles toward high radiance and long lifetime. Several thermal management strategies are proposed in this work, such as doping charge-transport layers, optimizing device geometry, and attaching heat spreaders and sinks. Combining these strategies, high-performance perovskite LEDs are demonstrated with maximum radiance of 2555 W sr−1 m−2, peak external quantum efficiency (EQE) of 17%, considerably reduced EQE roll-off (EQE > 10% to current densities as high as 2000 mA cm−2), and tenfold increase in operational lifetime (when driven at 100 mA cm−2). Furthermore, with proper thermal management, a maximum current density of 2.5 kA cm−2 and an EQE of ≈1% at 1 kA cm−2 are shown using electrical pulses, which represents an important milestone toward electrically driven perovskite lasers.  相似文献   

7.
Ji Hyun Seo 《Thin solid films》2009,517(5):1807-1861
The blue-green organic light-emitting diodes based on heteroleptic tris-cyclometalated iridium(III) complexes containing the F2-ppy (2,4-difluorophenylpyridine) and ppy (2-phenylpyridine) ligands were fabricated. Ir(ppy)3 has been known to have a high phosphorescence efficiency in electroluminescence owing to its strong metal-to-ligand-charge transfer (MLCT) excited state, whereas the luminous efficiency of Ir(F2-ppy)3 was found to be low due to weak MLCT. Herein, we report two heteroleptic phosphorescent blue-green emitters, Ir(ppy)2(F2-ppy) and Ir(ppy)(F2-ppy)2, that exhibit emission peaks at 502 nm and 495 nm, respectively. The maximum luminous efficiencies of the devices with Ir(ppy)2(F2-ppy) and Ir(ppy)(F2-ppy)2 were 8.93 cd/A and 13.80 cd/A, respectively. The quantum efficiency of the device containing Ir(ppy)(F2-ppy)2 was 3.63% at J = 10 mA/cm2.  相似文献   

8.
We report single dopant single emissive layer white organic electroluminescent (EL) device based on the heteroleptic tris-cyclometalated iridium(III) complex, Ir(dfppy)2(pq), as the guest, where dfppy and pq are 2-(2,4-difluorophenyl) pyridine and 2-phenylquinoline, respectively, and 1,4-phenylenesis(triphenylsilane) (UGH2) as the host. The maximum luminous and power efficiencies of the device were 11.00 cd/A (J = 0.05 mA/cm2) and 5.60 lm/W (J = 0.001 mA/cm2), respectively. The CIE coordinates of the device with Ir(dfppy)2(pq) are (0.443, 0.473) and the EL spectrum of device shows emission band at 473 and 544 nm, at the applied voltage of 12 V. The similar phosphorescent decay rate of two ligands can lead to emit luminescence in two ligands at the same time.  相似文献   

9.
Electrocatalytic oxidation of urea (UOR) is a potential energy-saving hydrogen production technology that can replace oxygen evolution reaction (OER). Therefore, CoSeP/CoP interface catalyst is synthesized on nickel foam using hydrothermal, solvothermal, and in situ template methods. The strong interaction of tailored CoSeP/CoP interface promotes the hydrogen production performance of electrolytic urea. During the hydrogen evolution reaction (HER), the overpotential can reach 33.7 mV at 10 mA cm−2. The cell voltage can reach 1.36 V at 10 mA cm−2 in the overall urea electrolytic process. Notably, the overall urine electrolysis performance of the catalyst in the human urine medium can reach 1.40 V at 10 mA cm−2 and can exhibit durable cycle stability at 100 mA cm−2. Density functional theory (DFT) proves that the CoSeP/CoP interface catalyst can better adsorb and stabilize reaction intermediates CO* and NH* on its surface through a strong synergistic effect, thus enhancing the catalytic activity.  相似文献   

10.
Noble metal doping can achieve an increase in mass activity (MA) without sacrificing catalysis efficiency and stability, so that alkaline hydrogen evolution reaction (HER) performance of the catalyst can be optimized to the maximum degree. However, its excessively large ionic radius makes it difficult to achieve either interstitial doping or substitutional doping under mild conditions. Herein, a hierarchical nanostructured electrocatalyst with enriched amorphous/crystalline interfaces for high-efficiency alkaline HER is reported, which is composed of amorphous/crystalline (Co, Ni)11(HPO3)8(OH)6 homogeneous hierarchical structure with an ultra-low doped Pt (Pt-a/c-NiHPi). Benefiting from the structural flexibility of the amorphous component, extremely low Pt (0.21 wt.%, totally 3.31 µg Pt on 1 cm−2 NF) are stably doped on it via a simple two-phase hydrothermal method. The DFT calculations show that due to the strongly electron transfer between the crystalline/amorphous components at the interfaces, electrons finally concentrate toward Pt and Ni in the amorphous components, thus the electrocatalyst has near-optimal energy barriers and adsorption energy for H2O* and H*. With the above benefits, the obtained catalyst exhibits an exceptionally high MA (39.1 mA µg−1Pt) at 70 mV, which is almost the highest level among the reported Pt-based electrocatalysts for alkaline HER.  相似文献   

11.
In this work, two novel thermally activated delayed fluorescence (TADF) emitters, 2tDMG and 3tDMG, are synthesized for high-efficiency organic light-emitting diodes (OLEDs), The two emitters have a tilted face-to-face alignment of donor (D)/acceptor (A) units presenting intramolecular noncovalent interactions. The two TADF materials are deposited either by an evaporation-process or by a solution-process, both of them leading to high OLED performance. 2tDMG used as the emitter in evaporation-processed OLEDs achieves a high external quantum efficiency (EQE) of 30.8% with a very flat efficiency roll-off of 7% at 1000 cd m−2. The solution-processed OLEDs also display an interesting EQE of 16.2%. 3tDMG shows improved solubility and solution processability as compared to 2tDMG, and thus a high EQE of 20.2% in solution-processed OLEDs is recorded. The corresponding evaporation-processed OLEDs also reach a reasonably high EQE of 26.3%. Encouragingly, this work provides a novel strategy to address the imperious demands for OLEDs with high EQE and low roll-off.  相似文献   

12.
Transition metal-nitrogen-carbon materials with atomically dispersed active sites are promising catalysts for oxygen evolution reaction (OER) since they combine the strengths of both homogeneous and heterogeneous catalysts. However, the canonically symmetric active site usually exhibits poor OER intrinsic activity due to its excessively strong or weak oxygen species adsorption. Here, a catalyst with asymmetric MN4 sites based on the 3-s-triazine of g-C3N4 (termed as a-MN4@NC) is proposed. Compared to symmetric, the asymmetric active sites directly modulate the oxygen species adsorption via unifying planar and axial orbitals (dx2-y2, dz2), thus enabling higher OER intrinsic activity. In Silico screening suggested that cobalt has the best OER activity among familiar nonprecious transition metal. These experimental results suggest that the intrinsic activity of asymmetric active sites (179 mV overpotential at onset potential) is enhanced by 48.4% compared to symmetric under similar conditions. Remarkably, a-CoN4@NC showed excellent activity in alkaline water electrolyzer (AWE) device as OER catalyst, the electrolyzer only required 1.7 V and 2.1 V respectively to reach the current density of 150 mA cm−2 and 500 mA cm−2. This work opens an avenue for modulating the active sites to obtain high intrinsic electrocatalytic performance including, but not limited to, OER.  相似文献   

13.
Organic light-emitting device (OLED) was fabricated using the novel red phosphorescent heteroleptic tris-cyclometalated iridium complex, bis(2-phenylpyridine)iridium(III)[2(5′-methylphenyl)-4-diphenylquinoline] [Ir(ppy)2(dpq-5CH3)], based on 2-phenylpyridine (ppy) and 2(5′-methylphenyl)-4-diphenylquinoline (dpq-5CH3) ligand. Generally, the ppy ligand in heteroleptic iridium complexes plays an important role as “sensitizer” in the efficient energy transfer from the host (CBP; 4,4,N,N′-dicarbazolebiphenyl) to the luminescent ligand (dpq-5CH3). We demonstrated that high efficiency through the “sensitizer” can be obtained, when the T1 of the emitting ligand is close to T1 of the sensitizing ligand. The device containing Ir(ppy)2(dpq-5CH3) produced red light emission of 614 nm with maximum luminescence efficiency and power efficiency of 8.29 cd/A (at 0.09 mA/cm2) and 5.79 lm/W (at 0.09 mA/cm2), respectively.  相似文献   

14.
Low-cost solution-processed CuIn(S,Se)2 (CISSe) has great potential for large-scale production of photovoltaics (PV). However, low power conversion efficiency caused by poor crystallinity is one of the main drawbacks compared to vacuum-processed CISSe solar cells. In this work, three strategies for sodium (Na) incorporation into solution-processed CISSe by soaking in sodium chloride (NaCl) aqueous-ethanol solution [1 molarity (M) for 10 minutes (min)], either prior to absorber deposition (pre-deposition treatment, Pre-DT), before selenization (pre-selenization treatment, Pre-ST), or after selenization (post-selenization treatment, PST) are researched. The Pre-ST CISSe solar cells achieve a better PV performance than those from the other two strategies of Na incorporation. For optimization, soaking times (5, 10, and 15 min) and NaCl concentrations (from 0.2 to 1.2 m ) of the Pre-ST are researched. The highest efficiency achieved is 9.6% with an open-circuit voltage (Voc) of 464.5 mV, a short-circuit current density (jsc) of 33.4 mA cm−2, and a fill factor (FF) of 62.0%. Compared to the reference CISSe solar cell, Voc, jsc, FF, and efficiency of the champion Pre-ST CISSe device are improved absolutely by 61.0 mV, 6.5 mA cm−2, 9%, and 3.8%, respectively. Simultaneously, the open-circuit voltage deficit, the back contact barrier, and the bulk recombination are found to be reduced for Pre-ST CISSe.  相似文献   

15.
Organic light emitting diodes (OLEDs) show a lot of advantages for display purposes. Because OLEDs provide white light emission with high efficiency and stability, it is desirable to apply OLEDs as an illumination light source and backlight in LCD displays. We synthesized new emissive materials, namely [2-(2-hydroxyphenyl)benzoxazole] (Zn(HPB)2) and [(2-(2-hydroxyphenyl)benzoxazole)(8-hydoxyquinoline)] (Zn(HPB)q), which have a low molecular compound and thermal stability. We studied white OLEDs using Zn(HPB)2 and Zn(HPB)q. The fundamental structures of the white OLEDs were ITO/PEDOT:PSS (23 nm)/NPB (40 nm)/Zn(HPB)2 (40 nm)/Zn(HPB)q (20, 30 or 40 nm)/Alq3 (10 nm)/LiAl (120 nm). As a result, when the thickness of the Zn(HPB)q layer was 20 nm, white emission is achieved. We obtained a maximum luminance of 15325 cd/m2 at a current density of 997 mA/cm2. The CIE (Commission International de l'Eclairage) coordinates are (0.28, 0.35) at an applied voltage of 9.75 V.  相似文献   

16.
Novel coumarin-terminated poly (p-phenylene vinylene)s were synthesized successfully via Gilch methodology. The resulting coumarin end-capped poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene (CT-MEH-PPV) film gives yellow photoluminesence with a maximum intensity at 560 nm, which is noticeably blue-shifted about 40 nm from that of MEH-PPV (598 nm). Light-emitting diode based on a double-layer structure (ITO/PEDOT/CT-MEH-PPV/Ba/Al) showed yellow emission with a maximum brightness of 956 cd m– 2 at 8.8 V and an external quantum efficiency of 0.28% at 49.5 mA cm– 2. The coumarin-terminted poly(2,3-diphenyl-5-hexyl -1,4-phenylene vinylene (CT-DPH-PPV), however, has similar emission spectrum with that of DPH-PPV, but its photoluminescence efficiency (0.78) is much more improved than that of DPH-PPV (0.55). The electroluminescent device (ITO/PEDOT/CT-DPH-PPV/Ba/Al) gave green emission peaked at 510 nm with a maximum brightness of 350 cd m– 2 at 18 V and an external quantum efficiency of 0.04% at 61 mA cm– 2. These results suggest that it is a convenient way to modify the structure of conjugated polymers by terminating to tune the emission color and improve photoluminescent and electroluminescent efficiencies as well.  相似文献   

17.
Alkaline membrane water electrolysis is a promising production technology, and advanced electrocatalyst and membrane electrode design have always been the core technology. Herein, an ion-exchange method and an environmentally friendly in situ green phosphating strategy are successively employed to fabricate Ru-Ru2P heterogeneous nanoparticles by using hydroxyapatite (HAP) as a phosphorus source, which is an exceptionally active electrocatalyst for hydrogen evolution reaction (HER). Density functional theory calculation results reveal that strong electronic redistribution occurs at the heterointerface of Ru-Ru2P, which modulates the electronic structure to achieve an optimized hydrogen adsorption strength. The obtained Ru-Ru2P possesses excellent HER performance (24 mV at 10 mA cm−2) and robust stability (1000 mA cm−2 for 120 h) in alkaline media. Furthermore, an environmentally friendly membrane electrode with a sandwich structure is assembled by HAP nanowires as an alkaline membrane, Ru-Ru2P as a cathodic catalyst, and NiFe-LDH as an anodic catalyst, respectively. The voltage of (−) Ru-Ru2P || NiFe-LDH/CNTs (+) (1.53 V at 10 mA cm−2) is lower than that of (−) 20 wt% Pt/C || RuO2 (+) (1.60 V at 10 mA cm−2) for overall water splitting. Overall, the studies not only design an efficient catalyst but also provide a new route to achieve a high-stability electrolyzer for industrial H2 production.  相似文献   

18.
The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2(XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron–phonon coupling and the unique rigid crystal structure of MnI2(XanPO) over the whole temperature range based on the temperature-dependent photoluminescence (PL) and single crystal X-ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC-LEDs with a power efficacy of 102.5 lm W−1, an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m−2 are fabricated by integrating MnI2(XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2(XanPO) in both micro-LEDs and organic light-emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications.  相似文献   

19.
InP quantum dots (QDs) based light‐emitting diodes (QLEDs) are considered as one of the most promising candidates as a substitute for the environmentally toxic Cd‐based QLEDs for future displays. However, the device architecture of InP QLEDs is almost the same as the Cd‐based QLEDs even though the properties of Cd‐based and InP‐based QDs are quite different in their energy levels and shapes. Thus, it is highly required to develop a proper device structure for InP‐based QLEDs to improve the efficiency and stability. In this work, efficient, bright, and stable InP/ZnSeS QLEDs based on an inverted top emission QLED (ITQLED) structure by newly introducing a “hole‐suppressing interlayer” are demonstrated. The green‐emitting ITQLEDs with the hole‐suppressing interlayer exhibit a maximum current efficiency of 15.1–21.6 cd A?1 and the maximum luminance of 17 400–38 800 cd m?2, which outperform the recently reported InP‐based QLEDs. The operational lifetime is also increased when the hole‐suppressing interlayer is adopted. These superb QLED performances originate not only from the enhanced light‐outcoupling by the top emission structure but also from the improved electron–hole balance by introducing a hole‐suppressing interlayer which can control the hole injection into QDs.  相似文献   

20.
The electrochemical carbon dioxide reduction reaction (E-CO2RR) to formate is a promising strategy for mitigating greenhouse gas emissions and addressing the global energy crisis. Developing low-cost and environmentally friendly electrocatalysts with high selectivity and industrial current densities for formate production is an ideal but challenging goal in the field of electrocatalysis. Herein, novel titanium-doped bismuth nanosheets (Ti Bi NSs) with enhanced E-CO2RR performance are synthesized through one-step electrochemical reduction of bismuth titanate (Bi4Ti3O12). We comprehensively evaluated Ti Bi NSs using in situ Raman spectra, finite element method, and density functional theory. The results indicate that the ultrathin nanosheet structure of Ti Bi NSs can accelerate mass transfer, while the electron-rich properties can accelerate the production of *CO2 and enhance the adsorption strength of *OCHO intermediate. The Ti Bi NSs deliver a high formate Faradaic efficiency (FEformate) of 96.3% and a formate production rate of 4032 µmol h−1 cm−2 at −1.01 V versus RHE. An ultra-high current density of −338.3 mA cm−2 is achieved at −1.25 versus RHE, and simultaneously FEformate still reaches more than 90%. Furthermore, the rechargeable Zn–CO2 battery using Ti Bi NSs as a cathode catalyst achieves a maximum power density of 1.05 mW cm−2 and excellent charging/discharging stability of 27 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号