首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
2.
3.
A novel, inexpensive biofunctionalization approach is adopted to develop a multimodal and theranostic nanoagent, which combines cancer‐targeted magnetic resonance/optical imaging and pH‐sensitive drug release into one system. This multifunctional nanosystem, based on an ultrasmall superparamagnetic iron oxide (USPIO) nanocore, is modified with a hydrophilic, biocompatible, and biodegradable coating of N‐phosphonomethyl iminodiacetic acid (PMIDA). Using appropriate spacers, functional molecules, such as rhodamine B isothiocyanate, folic acid, and methotrexate, are coupled to the amine‐derivatized USPIO–PMIDA support with the aim of endowing simultaneous targeting, imaging, and intracellular drug‐delivering capability. For the first time, phosphonic acid chemistry is successfully exploited to develop a stealth, multifunctional nanoprobe that can selectively target, detect, and kill cancer cells overexpressing the folate receptor, while allowing real‐time monitoring of tumor response to drug treatment through dual‐modal fluorescence and magnetic resonance imaging.  相似文献   

4.
Cancer theragnosis using a single multimodality agent is the next mainstay of modern cancer diagnosis, treatment, and management, but a clinically feasible agent with in vivo cancer targeting and theragnostic efficacy has not yet been developed. A new type of cancer theragnostic agent is reported, based on gold magnetism that is induced on a cancer‐targeting protein particle carrier. Superparamagnetic gold‐nanoparticle clusters (named SPAuNCs) are synthesized on a viral capsid particle that is engineered to present peptide ligands targeting a tumor cell receptor (TCR). The potent multimodality of the SPAuNCs is observed, which enables TCR‐specific targeting, T2‐weighted magnetic resonance imaging, and magnetic hyperthermia therapy of both subcutaneous and deep‐tissue tumors in live mice under an alternating magnetic field. Furthermore, it is analytically elucidated how the magnetism of the SPAuNCs is sufficiently induced between localized and delocalized spins of Au atoms. In particular, the SPAuNCs show excellent biocompatibility without the problem of in vivo accumulation and holds promising potential as a clinically effective agent for cancer theragnosis.  相似文献   

5.
Gd chelates have occupied most of the market of magnetic resonance imaging (MRI) contrast agents for decades. However, there have been some problems (nephrotoxicity, non‐specificity, and low r1) that limit their applications. Herein, a wet‐chemical method is proposed for facile synthesis of poly(acrylic acid) (PAA) stabilized exceedingly small gadolinium oxide nanoparticles (ES‐GON‐PAA) with an excellent water dispersibility and a size smaller than 2.0 nm, which is a powerful T1‐weighted MRI contrast agent for diagnosis of diseases due to its remarkable relaxivities (r1 = 70.2 ± 1.8 mM?1 s?1, and r2/r1 = 1.02 ± 0.03, at 1.5 T). The r1 is much higher and the r2/r1 is lower than that of the commercial Gd chelates and reported gadolinium oxide nanoparticles (GONs). Further ES‐GON‐PAA is developed with conjugation of RGD2 (RGD dimer) (i.e., ES‐GON‐PAA@RGD2) for T1‐weighted MRI of tumors that overexpress RGD receptors (i.e., integrin αvβ3). The maximum signal enhancement (ΔSNR) for T1‐weighted MRI of tumors reaches up to 372 ± 56% at 2 h post‐injection of ES‐GON‐PAA@RGD2, which is much higher than commercial Gd‐chelates (<80%). Due to the high biocompatibility and high tumor accumulation, ES‐GON‐PAA@RGD2 with remarkable relaxivities is a promising and powerful T1‐weighted MRI contrast agent.  相似文献   

6.
Development of molecular probes holds great promise for early diagnosis of aggressive prostate cancer. Here, 2‐[3‐(1,3‐dicarboxypropyl) ureido] pentanedioic acid (DUPA)‐conjugated ligand and bis‐isoindigo‐based polymer (BTII) are synthesized to formulate semiconducting polymer nanoparticles (BTII‐DUPA SPN) as a prostate‐specific membrane antigen (PSMA)‐targeted probe for prostate cancer imaging in the NIR‐II window. Insights into the interaction of the imaging probes with the biological targets from single cell to whole organ are obtained by transient absorption (TA) microscopy and photoacoustic (PA) tomography. At single‐cell level, TA microscopy reveals the targeting efficiency, kinetics, and specificity of BTII‐DUPA SPN to PSMA‐positive prostate cancer. At organ level, PA tomographic imaging of BTII‐DUPA SPN in the NIR‐II window demonstrates superior imaging depth and contrast. By intravenous administration, BTII‐DUPA SPN demonstrates selective accumulation and retention in the PSMA‐positive tumor, allowing noninvasive PA detection of PSMA overexpressing prostate tumors in vivo. The distribution of nanoparticles inside the tumor tissue is further analyzed through TA microscopy. These results collectively demonstrate BTII‐DUPA SPN as a promising probe for prostate cancer diagnosis by PA tomography.  相似文献   

7.
CG-rich duplex containing prostate-specific membrane antigen (PSMA) aptamer-conjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPIONs) is reported as prostate cancer-specific nanotheranostic agents. These agents are capable of prostate tumor detection in vivo by magnetic resonance imaging (MRI) and selective delivery of drugs to the tumor tissue, simultaneously. The prepared PSMA-functionalized TCL-SPION via a hybridization method (Apt-hybr-TCL-SPION) exhibited preferential binding towards target prostate-cancer cells (LNCaP, PSMA+) in both in vitro and in vivo when analyzed by T(2) -weighted MRI. After Dox molecules were loaded onto the Apt-hybr-TCL-SPION through the intercalation of Dox to the CG-rich duplex containing PSMA aptamer as well as electrostatic interaction between the Dox-and-polymer coating layer of the nanoparticles, the resulting Dox@Apt-hybr-TCL-SPION showed selective drug-delivery efficacy in the LNCaP xenograft mouse model. These results suggest that Dox@Apt-hybr-TCL-SPION has potential for use as novel prostate cancer-specific nanotheranostics.  相似文献   

8.
A unique dendrimer‐assisted approach is reported to create Fe3O4/Au nanocomposite particles (NCPs) for targeted dual mode computed tomography/magnetic resonance (CT/MR) imaging of tumors. In this approach, preformed Fe3O4 nanoparticles (NPs) are assembled with multilayers of poly(γ‐glutamic acid) (PGA)/poly(l ‐lysine)/PGA/folic acid (FA)‐modified dendrimer‐entrapped gold nanoparticles via a layer‐by‐layer self‐assembly technique. The interlayers are crosslinked via 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide chemistry, the assembled Au core NPs are then used as seed particles for subsequent seed‐mediated growth of Au shells via iterative Au salt reduction process, and subsequent acetylation of the remaining amines of dendrimers leads to the formation of Fe3O4/Aun.Ac‐FA NCPs with a tunable molar ratio of Au/Fe3O4. It is shown that the Fe3O4/Aun.Ac‐FA NCPs at an optimized Au/Fe3O4 molar ratio of 2.02 display a relatively high R2 relaxivity (92.67 × 10?3 M?1 s?1) and good X‐ray attenuation property, and are cytocompatible and hemocompatible in the given concentration range. Importantly, with the FA‐mediated targeting, the Fe3O4/Aun.Ac‐FA NCPs are able to be specifically uptaken by cancer cells overexpressing FA receptors, and be used as an efficient nanoprobe for targeted dual mode CT/MR imaging of a xenografted tumor model. With the versatile dendrimer chemistry, the developed Fe3O4/Au NCPs may be differently functionalized, thereby providing a unique platform for diagnosis and therapy of different biological systems.  相似文献   

9.
10.
采用高温热分解法, 以乙酰丙酮铁为铁源, 生物相容性良好的聚乙二醇(PEG1000)作为溶剂、还原剂及修饰剂制备PEG修饰的氧化铁纳米粒子(PEG-SPIONs), 并研究其在小鼠体内的造影效果。X射线衍射(XRD)分析表明样品中含有Fe3O4晶相。透射电镜(TEM)结果显示, 合成的PEG-SPIONs形貌均一, 主要为等轴晶形, 纳米粒度及电位分析表明其表面呈负电性, 分散在水中的动力学粒径为20 nm。磁性能结果表明合成的PEG-SPIONs室温下具有超顺磁性, 并且具有较高的r2/r1值。细胞活性研究表明PEG-SPIONs具有较低的生物毒性, 体内的磁共振成像结果显示出PEG-SPIONs优异的对比增强效果, 说明PEG-SPIONs可以作为高效的T2磁共振成像造影剂。  相似文献   

11.
A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA‐approved iron oxide nanoparticles ferumoxytol to an MMP‐activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO‐ICTs (TNPs). Significant cell death is observed in TNP‐treated MMP‐14 positive MMTV‐PyMT breast cancer cells in vitro, but not MMP‐14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV‐PyMT tumor‐bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO‐ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO‐ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme‐activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens.  相似文献   

12.
Gd‐based T 1‐weighted contrast agents have dominated the magnetic resonance imaging (MRI) contrast agent market for decades. Nevertheless, they are reported to be nephrotoxic and the U.S. Food and Drug Administration has issued a general warning concerning their use. In order to reduce the risk of nephrotoxicity, the MRI performance of the Gd‐based T 1‐weighted contrast agents needs to be improved to allow a much lower dosage. In this study, novel dotted core–shell nanoparticles (FeGd‐HN3‐RGD2) with superhigh r 1 value (70.0 mM?1 s?1) and very low r 2/r 1 ratio (1.98) are developed for high‐contrast T 1‐weighted MRI of tumors. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and histological analyses show good biocompatibility of FeGd‐HN3‐RGD2. Laser scanning confocal microscopy images and flow cytometry demonstrate active targeting to integrin αvβ3 positive tumors. MRI of tumors shows high tumor ΔSNR for FeGd‐HN3‐RGD2 (477 ± 44%), which is about 6‐7‐fold higher than that of Magnevist (75 ± 11%). MRI and inductively coupled plasma results further confirm that the accumulation of FeGd‐HN3‐RGD2 in tumors is higher than liver and spleen due to the RGD2 targeting and small hydrodynamic particle size (8.5 nm), and FeGd‐HN3‐RGD2 is readily cleared from the body by renal excretion.  相似文献   

13.
Mesenchymal stromal cells (MSCs) are promising candidates in regenerative cell‐therapies. However, optimizing their number and route of delivery remains a critical issue, which can be addressed by monitoring the MSCs’ bio‐distribution in vivo using super‐paramagnetic iron‐oxide nanoparticles (SPIONs). In this study, amino‐polyvinyl alcohol coated (A‐PVA) SPIONs are introduced for cell‐labeling and visualization by magnetic resonance imaging (MRI) of human MSCs. Size and surface charge of A‐PVA‐SPIONs differ depending on their solvent. Under MSC‐labeling conditions, A‐PVA‐SPIONs have a hydrodynamic diameter of 42 ± 2 nm and a negative Zeta potential of 25 ± 5 mV, which enable efficient internalization by MSCs without the need to use transfection agents. Transmission X‐ray microscopy localizes A‐PVA‐SPIONs in intracellular vesicles and as cytosolic single particles. After identifying non‐interfering cell‐assays and determining the delivered and cellular dose, in addition to the administered dose, A‐PVA‐SPIONs are found to be non‐toxic to MSCs and non‐destructive towards their multi‐lineage differentiation potential. Surprisingly, MSC migration is increased. In MRI, A‐PVA‐SPION‐labeled MSCs are successfully visualized in vitro and in vivo. In conclusion, A‐PVA‐SPIONs have no unfavorable influences on MSCs, although it becomes evident how sensitive their functional behavior is towards SPION‐labeling. And A‐PVA‐SPIONs allow MSC‐monitoring in vivo.  相似文献   

14.
Magnetic resonance imaging (MRI) of a target in vivo depends on the surface, size, and particle relaxivity of the target-specific nanoparticles for MRI. Here a new method for decorating very small iron oxide particles (VSOPs) with target-specific ligands is described. The method is based on the electrostatic attraction of the strongly positively charged peptide protamine to the anionic citrate shell of the electrostatically stabilized VSOPs. The protamine coat allows linkage chemistry and chimera technology to functionalize VSOPs or other negative charged surfaces with biologics. Annexin A5 (anxA5)-VSOP utilizing thiol chemistry was generated to couple biologically active anxA5 to VSOPs for in vivo MRI of apoptosis. Annexin A5-VSOP comprises five anxA5 molecules per iron oxide nanoparticle with a high R2 particle relaxivity of 180 000 mM(-1) s(-1) yet small hydrodynamic diameter of only 14.7+/-2.9 nm beneficial for in vivo MRI of extravascular targets.  相似文献   

15.
16.
To overcome traditional barriers in optical imaging and microscopy, optoacoustic‐imaging has been changed to combine the accuracy of spectroscopy with the depth resolution of ultrasound, achieving a novel modality with powerful in vivo imaging. However, magnetic resonance imaging provides better spatial and anatomical resolution. Thus, a single hybrid nanoprobe that allows for simultaneous multimodal imaging is significant not only for cutting edge research in imaging science, but also for accurate clinical diagnosis. A core‐shell‐structured coordination polymer composite microsphere has been designed for in vivo multimodality imaging. It consists of a Fe3O4 nanocluster core, a carbon sandwiched layer, and a carbocyanine‐GdIII (Cy‐GdIII) coordination polymer outer shell (Fe3O4@C@Cy‐GdIII). Folic acid‐conjugated poly(ethylene glycol) chains are embedded within the coordination polymer shell to achieve extended circulation and targeted delivery of probe particles in vivo. Control of Fe3O4 core grain sizes results in optimal r2 relaxivity (224.5 × 10–3 m −1 s‐1) for T2‐weighted magnetic resonance imaging. Cy‐GdIII coordination polymers are also regulated to obtain a maximum 25.1% of Cy ligands and 5.2% of GdIII ions for near‐infrared fluorescence and T1‐weighted magnetic resonance imaging, respectively. The results demonstrate their impressive abilities for targeted, multimodal, and reliable imaging.  相似文献   

17.
Recently, the development of nano‐theranostic agents aiming at imaging guided therapy has received great attention. In this work, a near‐infrared (NIR) heptamethine indocyanine dye, IR825, in the presence of cationic polymer, polyallylamine hydrochloride (PAH), forms J‐aggregates with red‐shifted and significantly enhanced absorbance. After further complexing with ultra‐small iron oxide nanoparticles (IONPs) and the followed functionalization with polyethylene glycol (PEG), the obtained IR825@PAH‐IONP‐PEG composite nanoparticles are highly stable in different physiological media. With a sharp absorbance peak, IR825@PAH‐IONP‐PEG can serve as an effective photothermal agent under laser irradiation at 915 nm, which appears to be optimal in photothermal therapy application considering its improved tissue penetration compared with 808‐nm light and much lower water heating in comparison to 980‐nm light. As revealed by magnetic resonance (MR) imaging, those nanoparticles after intravenous injection exhibit high tumor accumulation, which is then harnessed for in vivo photothermal ablation of tumors, achieving excellent therapeutic efficacy in a mouse tumor model. This study demonstrates for the first time that J‐aggregates of organic dye molecules are an interesting class of photothermal material, which when combined with other imageable nanoprobes could serve as a theranostic agent for imaging‐guided photothermal therapy of cancer.  相似文献   

18.
19F magnetic resonance imaging (19F MRI) agents capable of being activated upon interactions with cancer triggers are attracting increasing attention, although challenges still remain for precise and specific detection of cancer tissues. In this study, a novel hybrid 19F MRI agent for pH‐sensitive detection of breast cancer tissues is reported, a composite system designed by conjugating a perfluoropolyether onto the surface of manganese‐incorporated layered double hydroxide (Mn‐LDH@PFPE) nanoparticles. The 19F NMR/MRI signals from aqueous solutions of Mn‐LDH@PFPE nanoparticles are quenched at pH 7.4, but “turned on” following a reduction in pH to below 6.5. This is due to partial dissolution of Mn2+ from the Mn‐LDH nanoparticles and subsequent reduction in the effect of paramagnetic relaxation. Significantly, in vivo experiments reveal that an intense 19F MR signal can be detected only in the breast tumor tissue after intravenous injection of Mn‐LDH@PFPE nanoparticles due to such a specific activation. Thus pH‐activated Mn‐LDH@PFPE nanoparticles are a potential “smart” 19F MRI agent for precise and specific detection of cancer diseases.  相似文献   

19.
Hydrogels are widely used as cell scaffolds in several biomedical applications. Once implanted in vivo, cell scaffolds must often be visualized, and monitored overtime. However, cell scaffolds appear poorly contrasted in most biomedical imaging modalities such as magnetic resonance imaging (MRI). MRI is the imaging technique of choice for high-resolution visualization of low-density, water-rich tissues. Attempts to enhance hydrogel contrast in MRI are performed with “negative” contrast agents that produce several image artifacts impeding the delineation of the implant's contours. In this study, a magnetic ink based on ultra-small iron oxide nanoparticles (USPIONs; <5 nm diameter cores) is developed and integrated into biocompatible alginate hydrogel used in cell scaffolding applications. Relaxometric properties of the magnetic hydrogel are measured, as well as biocompatibility and MR-visibility (T1-weighted mode; in vitro and in vivo). A 2-week MR follow-up study is performed in the mouse model, demonstrating no image artifacts, and the retention of “positive” contrast overtime, which allows very precise delineation of tissue grafts with MRI. Finally, a 3D-contouring procedure developed to facilitate graft delineation and geometrical conformity assessment is applied on an inverted template alginate pore network. This proof-of-concept establishes the possibility to reveal precisely engineered hydrogel structures using this USPIONs ink high-visibility approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号