首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions that restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions are used so far (typically Mg2+ and Na+). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (~134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca2+, Ba2+, Na+, K+ and Li+ and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na+, K+ and Li+) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg2+, Ca2+ and Ba2+). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.  相似文献   

2.
The present experimental work provides the phenomenological approach to understand the dewetting in thin noble metal films with subsequent formation of nanoparticles (NPs) and embedding of NPs induced by ion irradiation. Au/polyethyleneterepthlate (PET) bilayers were irradiated with 150 keV Ar ions at varying fluences and were studied using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (X-TEM). Thin Au film begins to dewet from the substrate after irradiation and subsequent irradiation results in spherical nanoparticles on the surface that at a fluence of 5 × 1016 ions/cm2 become embedded into the substrate. In addition to dewetting in thin films, synthesis and embedding of metal NPs by ion irradiation, the present article explores fundamental thermodynamic principles that govern these events systematically under the effect of irradiation. The results are explained on the basis of ion induced sputtering, thermal spike inducing local melting and of thermodynamic driving forces by minimization of the system free energy where contributions of surface and interfacial energies are considered with subsequent ion induced viscous flow in substrate.  相似文献   

3.
Bimetallic Ag-Au nanoparticles are synthesized by sequential deposition of Au and Ag on amorphous silica by Radio Frequency (RF)-sputtering under mild conditions. Specimens are thoroughly characterized by a multi-technique approach, aimed at investigating the system properties as a function of the Ag/Au content, as well as the evolution induced by ex-situ annealing under inert (N2) or reducing (4% H2/N2) atmospheres. The obtained results demonstrate the possibility to obtain Ag-Au alloyed nanoparticles with controllable size, shape, structure, and dispersion under mild conditions, so that the optical properties can be finely tuned as a function of the synthesis and thermal treatment conditions.  相似文献   

4.
In situ one-step chemical synthesis route for the preparation of a gold–polyaniline composite in nanopores of polycarbonate (PC) membrane is reported. PC membrane, which was placed in a specially designed two-compartment cell, separated the aqueous solution of aniline from HAuCl4 solution. Concentration gradient across the membrane caused movement of AuCl4 and anilinium ions in the pores of polycarbonate membrane. Nanopores in PC membrane acted as reaction vessels where aniline and HAuCl4 were allowed to mix together, and the redox reaction between aniline and HAuCl4 led to the formation of gold–polyaniline composite. The gold–polyaniline composite in PC membrane was characterised by EDXRF, XRD, UV–Vis spectroscopy, FTIR and TEM. Peak broadening in XRD suggests that Au particles formed in the membrane are nanocrystallites and average crystallite size is (24 ± 4) nm. TEM studies show that gold nanoparticles are randomly dispersed in polyaniline clusters formed in the nanopores of PC membrane. Characterisation results show that the surfaces of the PC membrane exposed to HAuCl4 and aniline have significantly higher concentrations of Au nanoparticles and polyaniline, respectively.  相似文献   

5.
The interaction of the surface plasmons of gold nanoparticles on silicon nanowires with fluorophores, lanthanide ions (praseodymium ions, Pr3+, neodymium ions Nd3+, holmium ions Ho3+, and erbium ions Er3+) was investigated. In the presence of Au/Si nanomaterials, the fluorescence peaks were significantly enhanced, which resulted in about 2 orders of magnitude enhancement. The photoluminescence studies revealed that the enhanced fluorescence originates from the local field enhancement around Ln3+ ions, caused by the electronic plasmons resonance of the gold nanoparticles. Results showed that this Au/Si nanostructure had larger enhancement factor than that caused by unsupported Au nanoparticles. These results might be explained by the local field overlap originated from the closed and fixed gold nanoparticles on silicon nanowires.  相似文献   

6.
The fabrication of a cholesterol biosensor using gold nanoparticles decorated graphene nanoplatelets has been reported. Thermally exfoliated graphene nanoplatelets act as a suitable support for the deposition of Au nanoparticles. Cholesterol biosensor electrodes have been constructed with nafion solubilized functionalized graphene nanoplatelets (f-G) as well as Au nanoparticles decorated f-G, immobilized over glassy carbon electrode. f-G and Au/f-G thin film deposited glassy carbon electrodes were further functionalized with cholesterol oxidase by physical adsorption. Au nanoparticles dispersed over f-G demonstrate the ability to substantially raise the response current. The fabricated electrodes have been tested for their electrochemical performance at a potential of 0.2 V. The fabricated Au/f-G based cholesterol biosensor exhibits sensitivity of 314 nA/μM cm2 for the detection of cholesterol with a linear response up to 135 μM. Furthermore, it has been observed that the biosensor exhibits a good anti-interference ability and favorable stability over a month's period.  相似文献   

7.
New synthetic methods capable of controlling structural and compositional complexities of asymmetric nanoparticles (NPs) are very challenging but highly desired. A simple and general synthetic approach to designing sophisticated asymmetric NPs by anisotropically patterning the surface of isotropic metallic NPs with amphiphilic block copolymers (BCPs) is reported. The selective galvanic replacement and seed‐mediated growth of a second metal can be achieved on the exposed surface of metal NPs, resulting in the formation of nanobowls and Janus‐type metal–metal dimers, respectively. Using Ag and Au NPs tethered with amphiphilic block copolymers of poly(ethylene oxide)‐block‐polystyrene (PEO‐b‐PS), anisotropic surface patterning of metallic NPs (e.g., Ag and Au) is shown to be driven by thermodynamical phase segregation of BCP ligands on isotropic metal NPs. Two proof‐of‐concept experiments are given on, i) synthesis of Au nanobowls by a selective galvanic replacement reaction on Janus‐type patched Ag/polymer NPs; and ii) preparation of Au–Pd heterodimers and Au–Au homodimers by a seed‐mediated growth on Janus‐type patched Au/polymer NPs. The method shows remarkable versatility; and it can be easily handled in aqueous solution. This synthetic strategy stands out as the new methodology to design and synthesis asymmetric metal NPs with sophisticated topologies.  相似文献   

8.
Superparamagnetic Fe3O4/Au nanoparticles were synthesized and surface modified with mercaptopropionic acid (MPA), followed by conjugating Nα,Nα-Bis(carboxymethyl)-l-lysine hydrate (ANTA) and subsequently chelating Co2 +. The resulting Fe3O4/Au–ANTA–Co2 + nanoparticles have an average size of 210 nm in aqueous solution, and a magnetization of 36 emu/g, endowing the magnetic nanoparticles with excellent magnetic responsivity and dispersity. The Co2 + ions in the magnetic nanoparticle shell provide docking site for histidine, and the Fe3O4/Au–ANTA–Co2 + nanoparticles exhibit excellent performance in binding of a His-tagged protein with a binding capacity of 74 μg/mg. The magnetic nanoparticles show highly selective purification of the His-tagged protein from Escherichia coli lysate. Therefore, the obtained Fe3O4/Au–ANTA–Co2 + nanoparticles exhibited excellent performance in the direct separation of His-tagged protein from cell lysate.  相似文献   

9.
Abstract

Crystallized and spherical-shaped Au and Au–Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au–Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au–Ag alloy nanoparticles (Au–AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core–shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au–Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.  相似文献   

10.
Due to the merits of high activity and rapid reaction kinetics, ultrafine nanoparticles loaded on conductive scaffolds are of great potential in energy-related fields. Usually, the nucleation and uniform growth of these active nanoparticles in high density on scaffolds is governed by the local ion concentration gradient and nucleation sites at the interfaces. On account of this, a novel interface-inverting strategy is developed to modulate the diffusion of metal ions toward the nucleation sites, leading to the tuned growth of ultrafine nanoparticles anchored on graphene. Typically, the Ni(OH)2 deposited on graphene initially enables the interface inverting from oil–water–solid consisting of liquid paraffin (LP), water, and GO to water–oil–solid, finally resulting in LP-enveloped Ni(OH)2/GO structure. In response, the inert-infiltrated LP layer inhibits the solubility and diffusion of nickel ions, which functions to modulate the growth and aggregation of adjacent nanoparticles. As a demonstration, the phosphorized Ni2P@C/G as anode in sodium-ion capacitor can deliver a high energy density of 54 Wh kg−1 at a high power density of 23 kW kg−1 yet with a remarkable rate performance due to the surface-enhanced energy storage and fast Na+ transport enabled by the tuned surface/interface.  相似文献   

11.
Prevalent research underscores efforts to engineer highly sophisticated nanovesicles that are functionalized to combat antibiotic‐resistant bacterial infections, especially those caused by methicillin‐resistant Staphylococcus aureus (MRSA), and that aid with wound healing or immunomodulation. This is especially relevant for patients who are susceptible to Staphylococcus aureus infections postoperatively. Here, antibacterial formulations are incorporated into polymeric, biocompatible vesicles called polymersomes (PsNPs) that self‐assemble via hydrophobic interactions of admixed aqueous and organic substances. Nano‐PsNPs are synthesized using a high molecular weight amphiphilic block copolymer, and are conjugated to include antimicrobial peptides (AMPs) along the peripheral hydrophilic region and silver nanoparticles (AgNPs) inside their hydrophobic corona. In vitro testing on bacterial and human cell lines indicates that finely tuned treatment concentrations of AMP and AgNPs in PsNPs synergistically inhibits the growth of MRSA without posing significant side effects, as compared with other potent treatment strategies. A ratio of silver‐to‐AMP of about 1:5.8 corresponding to ≈11.6 µg mL?1 of silver nanoparticles and 14.3 × 10?6 m of the peptide, yields complete MRSA inhibition over a 23 h time frame. This bacteriostatic activity, coupled with nominal cytotoxicity toward native human dermal fibroblast cells, extends the potential for AMP/AgNP polymersome therapies to replace antibiotics in the clinical setting.  相似文献   

12.
We report the first application of Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages in a multiplexed dot immunoassay. The assay principle is based on the staining of analyte drops on a nitrocellulose membrane strip by using multicolor nanoparticles conjugated with biospecific probing molecules. Nanoparticles were prepared by a galvanic replacement reaction between the Ag atoms of silver nanocubes and Au ions of tetrachloroauric acid. Depending on the Ag/Au conversion ratio, the particle plasmon resonance was tuned from 450 to 700 nm and the suspension color changed from yellow to blue. The particles of yellow, red, and blue suspensions were functionalized with chicken, rat, and mouse immuno gamma globulin (IgG) molecular probes, respectively. The multiplex capability of the assay was illustrated by a proof-of-concept experiment involving simultaneous one-step determination of target molecules (rabbit anti-chicken, anti-rat, and anti-mouse antibodies) with a mixture of fabricated conjugates. Under naked eye examination, no cross-colored spots or nonspecific bioconjugate adsorption were observed, and the low detection limit was about 20 fmol.   相似文献   

13.
Crystallized and spherical-shaped Au and Au–Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au–Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au–Ag alloy nanoparticles (Au–AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core–shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au–Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.  相似文献   

14.
Advances in nanophotonics have shown the potential of colloidal metal nanoparticles with sharp tips, such as rods, to focalize plasmonic electromagnetic fields. We report on the synthesis of Au nanorods via a seed mediated approach and the influence of silver ions on the aspect ratio of the Au nanorods. The longitudinal surface plasmon resonance (LSPR) of the Au nanorods was successfully tuned with the concentration of silver ions. The surface enhanced Raman scattering (SERS) effect of 2-aminothiophenol (2-ATP) as a probe molecule on Au nanorods was systematically studied by varying the longitudinal surface plasmon resonance of the nanorods. The highest electromagnetic enhancement was observed when the longitudinal surface plasmon resonance of the Au nanorods overlapped with the laser excitation wavelength. The variation of the SERS enhancement factor with the longitudinal surface plasmon resonance and laser excitation lines is also discussed in detail.  相似文献   

15.
《Materials Letters》2007,61(14-15):2879-2882
Silica nanoparticles, prepared by the Stober method, have been doped with Eu3+, Dy3+, or processed to result in Au nanoparticles on the silica surface. The luminescence of the rare earth (RE)-doped SiO2 particles has been studied as a function of the nature of the RE, their concentration and also of the presence of Au nanoparticles at the surface of the SiO2 nanoparticles. We have shown that the Eu3+ emission is observable over the experimental conditions examined, whereas it was not possible to observe any emission for Dy3+ doped materials. No enhancement of the Eu3+ emission was observed following the adsorption of gold nanoparticles at the surface of the SiO2 nanoparticle, however an excitation at 250 nm leads to both the emission of the matrix and Eu3+ showing an energy transfer from the SiO2 matrix to Eu3+ ions.  相似文献   

16.
From a neurotoxicological perspective, we have investigated effects of Pb2+ and other divalent metal ions on membrane signaling by voltage‐, Ca2+‐ and ligand‐gated ion channels using voltage clamp and patch clamp techniques. The results from our and other studies of the effects of metal ions reported in the literature are summarized here and demonstrate that metal ions cause multiple, distinct effects on a variety of membrane signaling processes. A situation similar to that with membrane ion channels applies to the effects of metal ions on intracellular signaling. Effects on exocytosis, a resultant of highly integrated and complex intracellular signaling, indicate that Pb2+ is a substitute for intracellular Ca2+ in the triggering the fusion and release of exocytotic vesicles. Despite the relatively detailed knowledge of metal effects at the molecular level, few specific cellular targets associated with specific toxic effects of metals have been identified. Such knowledge is essential for the understanding of metal toxicity.  相似文献   

17.
《Materials Letters》2007,61(23-24):4500-4503
This paper presents a new synthetic route to hybridize ZnS semiconductor nanoparticles and poly(vinyl alcohol) (PVA) based electrospinning nanofibers. At first, zinc ions are introduced onto the surface of carboxylic PVA nanofibers. Then sulfide ions are added to react with zinc ions to form ZnS nanoparticles. The average diameter of the nanofibers is about 300 nm, and the diameter of the ZnS nanoparticles is about 5 nm. The photoluminescence spectrum of ZnS/carboxylic PVA nanocomposites has a 60 nm blue shift compared with that of the corresponding bulk ZnS sample. The carboxylic PVA enhances the quantum effects of the ZnS nanoparticles.  相似文献   

18.
《Materials Letters》2007,61(23-24):4545-4548
We study the effect of divalent metal hydroxide solubility product on the size and magnetic properties of nanoparticles formed during co-precipitation. We synthesized ferrite nanoparticles by varying the solubility product from 10 13 to 10 17 by using different divalent cations of Mn, Co, Fe and Zn, where the average particle size decreased from 29.1 to 8.9 nm. The Mn, Co and Fe ferrites were magnetic in nature with saturation magnetization of 44.6, 47.38 and 56.19 emu/g respectively, whereas the Zn ferrite was paramagnetic. The increase in particle size observed with increasing solubility product of divalent metal hydroxide is in agreement with the nucleation theory.  相似文献   

19.
In this work, we report a new pathway to prepare clean gold nanoparticles in neutral solutions with aid of natural chitosan. First, an Au substrate was cycled in a deoxygenated aqueous solution containing 0.1N NaCl and 1 g L?1 chitosan from ?0.28 to +1.22 V vs. Ag/AgCl at 500 mV s?1 for 200 scans. The durations at the cathodic and anodic vertices are 10 and 5 s, respectively. After this process, positively charged Au- and chitosan-containing complexes were produced in the solution. Then the solution was heated from room temperature to boiling at a heating rate of 6 °C min?1 to prepare Au nanoparticles. The particle sizes of prepared Au (1 1 1) nanoparticles are ca. 10 nm. Moreover, the prepared Au nanoparticles in solutions are capable for anti-oxidation and stable in an ambient atmosphere for at least three months.  相似文献   

20.
Herein we report on the production of composite core-shell particles, which are actually self-assembly of poly (N-isopropylacrylamide)-based amphiphilic block copolymers as a template for metal-block copolymer nanocomposites formation. Organic-inorganic composites were prepared with Ag nanoparticles embedded within colloidal particles of an amphiphilic, thermally responsive polymer. To promote the incorporation of unaggregated Ag nanoparticles, temperature responsive microspheres of poly (N-isopropylacrylamide) (NIPAM) block with polystyrene were synthesized. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and poly (styrene-b-N-isopropylacrylamide) (PS-b-PNIPAM) colloids and the reducing agent in the formation of Ag nanoparticles. Transmission electron microscopy (TEM) measurements confirmed the nanostructures, 1HNMR and FTIR characterized the components of the resulting nanoobjects. These stimuli-responsive hybrid microspheres will have potential applications in biomedical areas, such as tissue engineering and drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号