首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppressing the dendrite formation and managing the volume change of lithium (Li) metal anode have been global challenges in the lithium batteries community. Herein, a duplex copper (Cu) foil with an ant‐nest‐like network and a dense substrate is reported for an ultrastable Li metal anode. The duplex Cu is fabricated by sulfurization of thick Cu foil with a subsequent skeleton self‐welding procedure. Uniform Li deposition is achieved by the 3D interconnected architecture and lithiophilic surface of self‐welded Cu skeleton. The sufficient space in the porous layer enables a large areal capacity for Li and significantly improves the electrode–electrolyte interface. Simulations reveal that the structure allows proper electric field penetration into the connected tunnels. The assembled Li anodes exhibit high coulombic efficiency (97.3% over 300 cycles) and long lifespan (>880 h) at a current density of 1 mA cm?2 with a capacity of 1 mAh cm?2. Stable and deep cycling can be maintained up to 50 times at a high capacity of 10 mAh cm?2.  相似文献   

2.
Li‐metal batteries (LiMBs) are experiencing a renaissance; however, achieving scalable production of dendrite‐free Li anodes for practical application is still a formidable challenge. Herein, a facile and universal method is developed to directly reduce graphene oxide (GO) using alkali metals (e.g., Li, Na, and K) in moderate conditions. Based on this innovation, a spontaneously reduced graphene coating can be designed and modulated on a Li surface (SR‐G‐Li). The symmetrical SR‐G‐Li|SR‐G‐Li cell can run up to 1000 cycles at a high practical current density of 5 mA cm?2 without a short circuit, demonstrating one of the longest lifespans reported with LiPF6‐based carbonate electrolytes. More significantly, a practically scalable paradigm is established to fabricate dendrite‐free Li anodes by spraying a GO layer on the Li anode surface for large‐scale production of LiFePO4/Li pouch cells, reflected by the continuous manufacturing of the SR‐G‐Li anodes based on the roll‐to‐roll technology. The strategy provides new commercial opportunities to both LiMBs and graphene.  相似文献   

3.
Zinc metal anode has garnered a great deal of scientific and technological interest. Nevertheless, major bottlenecks restricting its large-scale utilization lie in the poor electrochemical stability and unsatisfactory cycling life. Herein, a Janus separator is developed via directly growing vertical graphene (VG) carpet on one side of commercial glass fiber separator throughout chemical vapor deposition. A simple air plasma treatment further renders the successful incorporation of oxygen and nitrogen heteroatoms on bare graphene. Thus-derived 3D VG scaffold affording large surface area and porous structure can be viewed as a continuation of planar zinc anode. In turn, the Janus separator harvests homogenous electric field distribution and lowered local current density at the interface of the anode/electrolyte, as well as harnesses favorable zincophilic feature for building-up uniform Zn ionic flux. Such a separator engineering enables an impressive rate and cycle performance (93% over 5000 cycles at 5 A g−1) for Zn-ion hybrid capacitors and outstanding energy density (182 Wh kg−1) for V2O5//Zn batteries, respectively. This strategy with large scalability and cost-effectiveness represents a universal route to protect prevailing metal anodes (Zn, Na, K) in rechargeable batteries.  相似文献   

4.
The Li metal anode has long been considered as one of the most ideal anodes due to its high energy density. However, safety concerns, low efficiency, and huge volume change are severe hurdles to the practical application of Li metal anodes, especially in the case of high areal capacity. Here it is shown that that graphitized carbon fibers (GCF) electrode can serve as a multifunctional 3D current collector to enhance the Li storage capacity. The GCF electrode can store a huge amount of Li via intercalation and electrodeposition reactions. The as‐obtained anode can deliver an areal capacity as high as 8 mA h cm?2 and exhibits no obvious dendritic formation. In addition, the enlarged surface area and porous framework of the GCF electrode result in lower local current density and mitigate high volume change during cycling. Thus, the Li composite anode displays low voltage hysteresis, high plating/stripping efficiency, and long lifespan. The multifunctional 3D current collector promisingly provides a new strategy for promoting the cycling lifespan of high areal capacity Li anodes.  相似文献   

5.
Implementing the utilization of lithium metal in actual processing and application conditions is essential for next-generation high-energy batteries at a practical level. However, the air/water instability of the high-reactive Li metal remains unsolved. Here, a water-stable Li metal anode with ultrahigh-rate capability enabled by a rationally designed architecture is reported. A hydrophobic graphene framework, consists of an array of vertically aligned sheets and a roof of sloping-aligned sheets, is utilized to fully host lithium metal. As a result, it is first demonstrated that the composite Li metal anode can run stably even after it directly contacts with water. In addition, both the arrays and the roof in the framework are directional graphene microsheets that can provide fast charge transport kinetics in the anode without tortuosity. Therefore, the anode can operate at an extremely high current density of 50 mA cm−2 with long-term cycling stability. Importantly, the composite Li anodes in Li||LiFePO4 and Li||NCM-811 cells also show much improved performances than Li metal foil under crucial conditions of lean electrolyte and low negative/positive capacity ratio. This design provides a significant stride in the safety toward the practicability of low air/water tolerance materials.  相似文献   

6.
Lithium metal is the only anode material that can enable the Li−O2 battery to realize its high theoretical energy density (≈3500 Wh kg−1). However, the inherent uncontrolled dendrite growth and serious corrosion limitations of lithium metal anodes make it experience fast degradation and impede the practical application of Li−O2 batteries. Herein, a multifunctional complementary LiF/F-doped carbon gradient protection layer on a lithium metal anode by one-step in situ reaction of molten Li with poly(tetrafluoroethylene) (PTFE) is developed. The abundant strong polar C-F bonds in the upper carbon can not only act as Li+ capture site to pre-uniform Li+ flux but also regulate the electron configuration of LiF to make Li+ quasi-spontaneously diffuse from carbon to LiF surface, avoiding the strong Li+-adhesion-induced Li aggregation. For LiF, it can behave as fast Li+ conductor and homogenize the nucleation sites on lithium, as well as ensure firm connection with lithium. As a result, this well-designed protection layer endows the Li metal anode with dendrite-free plating/stripping and anticorrosion behavior both in ether-based and carbonate ester-based electrolytes. Even applied protected Li anodes in Li−O2 batteries, its superiority can still be maintained, making the cell achieve stable cycling performance (180 cycles).  相似文献   

7.
Metallic lithium (Li) is a promising anode material for next‐generation rechargeable batteries. However, the dendrite growth of Li and repeated formation of solid electrolyte interface during Li plating and stripping result in low Coulombic efficiency, internal short circuits, and capacity decay, hampering its practical application. In the development of stable Li metal anode, the current collector is recognized as a critical component to regulate Li plating. In this work, a lithiophilic Cu‐CuO‐Ni hybrid structure is synthesized as a current collector for Li metal anodes. The low overpotential of CuO for Li nucleation and the uniform Li+ ion flux induced by the formation of Cu nanowire arrays enable effective suppression of the growth of Li dendrites. Moreover, the surface Cu layer can act as a protective layer to enhance structural durability of the hybrid structure in long‐term running. As a result, the Cu‐CuO‐Ni hybrid structure achieves a Coulombic efficiency above 95% for more than 250 cycles at a current density of 1 mA cm?2 and 580 h (290 cycles) stable repeated Li plating and stripping in a symmetric cell.  相似文献   

8.
Bismuth is a promising anode material for state‐of‐the‐art rechargeable batteries due to its high theoretical volumetric capacity and relatively low working potential. However, its charge storage mechanism is unclear, hindering further improvement of the cell performance. Here, using in situ transmission electron microscopy and X‐ray diffraction techniques as well as theoretical analysis, it is found that a large anisotropic volume expansion of 142% occurs along the z‐axis largely due to the alloy reaction during sodiation, significantly reducing the electrochemical performance of bismuth electrodes. To address this problem, ultrathin few‐layer bismuthene with a large aspect ratio is rationally synthesized, and can relieve the expansion strain along the z‐axis. A free‐standing bismuthene/graphene composite electrode with tunable thickness achieves a strikingly stable and high areal sodium storage capacity of 12.1 mAh cm?2, which greatly exceeds that of most reported electrode materials. The clarification of the charge storage mechanism and the superior areal capacity achieved should facilitate the development of bismuth‐based high‐performance anodes for practical electrochemical energy‐storage applications.  相似文献   

9.
The construction of conductive scaffolds is demonstrated to be an ideal strategy to alleviate the volume expansion and dendrite growth of K metal anodes. Nevertheless, the heterogeneous top–bottom deposition behavior caused by incompatible electronic/ionic conductivity of three-dimensional (3D) skeleton severely hinders its application. Here, a K2Se/Cu conducting layer is fabricated on the Cu foam so as to enhance ionic transport and weaken electronic conductivity of the skeleton. Then, an excellent simultaneous deposition behavior of K metal inside the host is obtained for the first time via tuning fast ionic transport and low electronic conductivity. The simultaneous deposition mode can not only utilize the entire 3D structure to accommodate the volume expansion during K deposition but also avoid the formation of K dendrites at high current and ultra-low temperature. Consequently, the symmetric cells present a long cycle lifespan over 1000 h with a low deposition overpotential of 80 mV at 1 mA cm−2. Furthermore, the full cell matching with the perylene-tetracarboxylic dianhydride (PTCDA) cathode presents an outstanding cycle lifespan over 600 cycles at 5 C at -20°C. The proposed simultaneous deposition strategy provides a new design direction for the construction of dendrite-free K metal anodes.  相似文献   

10.
As anodes of Li‐ion batteries, copper oxides (CuO) have a high theoretical specific capacity (674 mA h g?1) but own poor cyclic stability owing to the large volume expansion and low conductivity in charges/discharges. Incorporating reduced graphene oxide (rGO) into CuO anodes with conventional methods fails to build robust interaction between rGO and CuO to efficiently improve the overall anode performance. Here, Cu2O/CuO/reduced graphene oxides (Cu2O/CuO/rGO) with a 3D hierarchical nanostructure are synthesized with a facile, single‐step hydrothermal method. The Cu2O/CuO/rGO anode exhibits remarkable cyclic and high‐rate performances, and particularly the anode with 25 wt% rGO owns the best performance among all samples, delivering a record capacity of 550 mA h g?1 at 0.5 C after 100 cycles. The pronounced performances are attributed to the highly efficient charge transfer in CuO nanosheets encapsulated in rGO network and the mitigated volume expansion of the anode owing to its robust 3D hierarchical nanostructure.  相似文献   

11.
Na metal anode attracts increasing attention as a promising candidate for Na metal batteries (NMBs) due to the high specific capacity and low potential. However, similar to issues faced with the use of Li metal anode, crucial problems for metallic Na anode remain, including serious moss‐like and dendritic Na growth, unstable solid electrolyte interphase formation, and large infinite volume changes. Here, the rational design of carbon paper (CP) with N‐doped carbon nanotubes (NCNTs) as a 3D host to obtain Na@CP‐NCNTs composites electrodes for NMBs is demonstrated. In this design, 3D carbon paper plays a role as a skeleton for Na metal anode while vertical N‐doped carbon nanotubes can effectively decrease the contact angle between CP and liquid metal Na, which is termed as being “Na‐philic.” In addition, the cross‐conductive network characteristic of CP and NCNTs can decrease the effective local current density, resulting in uniform Na nucleation. Therefore, the as‐prepared Na@CP‐NCNT exhibits stable electrochemical plating/stripping performance in symmetrical cells even when using a high capacity of 3 mAh cm?2 at high current density. Furthermore, the 3D skeleton structure is observed to be intact following electrochemical cycling with minimum volume change and is dendrite‐free in nature.  相似文献   

12.
Sodium (Na) metal is able to directly use as a battery anode but have a highly reductive ability of unavoidably occurring side reactions with organic electrolytes, resulting in interfacial instability as a primary factor in performance decay. Therefore, building stable Na metal anode is of utmost significance for both identifying the electrochemical performance of laboratory half-cells employed for quantifying samples and securing the success of room-temperature Na metal batteries. In this work, we propose an NaF-rich interface rapidly prepared by pressure and diglyme-induced defluorination reaction for stable Na metal anode. Once the electrolyte is dropped into the coin-type cells followed by a slight squeeze, the Na metal surface immediately forms a protective layer consisting of amorphous carbon and NaF, effectively inhibiting the dendrite growth and dead Na. The resultant Na metal anode exhibits a long-term cycling lifespan over 1800 h even under the area capacity of 3.0 mAh cm−2. Furthermore, such a universal and facile method is readily applied in daily battery assembly regarding Na metal anode.  相似文献   

13.
Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high‐capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by graphene is synthesized by a one‐step aerosol spraying of surface‐modified Si nanoparticles and graphene oxide suspension. The functional groups on the surface of Si nanoparticles (50–100 nm) not only react with graphene oxide and bind Si nanoparticles to the graphene oxide shell, but also prevent Si nanoparticles from aggregation, thus contributing to a uniform Si suspension. A homogeneous graphene‐encapsulated Si nanoparticle morphology forms during the aerosol spraying process. The open‐ended graphene shell with defects allows fast electrochemical lithiation/delithiation, and the void space inside the graphene shell accompanied by its strong mechanical strength can effectively accommodate the volume expansion of Si upon lithiation. The graphene shell provides good electronic conductivity for Si nanoparticles and prevents them from aggregating during charge/discharge cycles. The functionalized Si encapsulated by graphene sample exhibits a capacity of 2250 mAh g?1 (based on the total mass of graphene and Si) at 0.1C and 1000 mAh g?1 at 10C, and retains 85% of its initial capacity even after 120 charge/discharge cycles. The exceptional performance of graphene‐encapsulated Si anodes combined with the scalable and one‐step aerosol synthesis technique makes this material very promising for lithium ion batteries.  相似文献   

14.
对于高能量密度的锂离子电池而言, 研究稳定、高容量负极材料的需求十分迫切。基于此, 本工作设计了一种简单有效的溶胶-凝胶法, 来合成高性能的被还原石墨烯氧化物原位包覆的MnTiO3纳米颗粒(MnTiO3@rGO)。合成的MnTiO3纳米粒子分散均匀, 被少层的石墨烯包裹。由于还原氧化石墨烯的高电导率, MnTiO3@rGO作为锂离子电池负极表现出优异的倍率性能, 在5.0 A·g-1的高电流密度时, MnTiO3@rGO展现出了286 mAh·g-1的比容量。此外, 得益于MnTiO3@rGO的多孔结构和柔性的还原氧化石墨烯外层, MnTiO3@rGO负极具有显著的长期循环稳定性。在500个循环后, 比容量仍保持在441 mAh·g-1, 仅损失了8.4%。结果表明, 该方法对提高金属氧化物负极的导电性和循环稳定性具有较高的应用价值。  相似文献   

15.
Dendrite and interfacial reactions have affected zinc (Zn) metal anodes for rechargeable batteries many years. Here, these obstacles are bypassed via adopting an intrinsically safe trimethyl phosphate (TMP)‐based electrolyte to build a stable Zn anode. Along with cycling, pristine Zn foil is gradually converted to a graphene‐analogous deposit via TMP surfactant and a Zn phosphate molecular template. This novel Zn anode morphology ensures long‐term reversible plating/stripping performance over 5000 h, a rate capability of 5 mA cm?2, and a remarkably high Coulombic efficiency (CE) of ≈99.57% without dendrite formation. As a proof‐of‐concept, a Zn–VS2 full cell demonstrates an ultralong lifespan, which provides an alternative for electrochemical energy storage devices.  相似文献   

16.
Sodium-ion batteries (SIBs) have attracted tremendous attention as promising low-cost energy storage devices in future grid-scale energy management applications. Bismuth is a promising anode for SIBs due to its high theoretical capacity (386 mAh g−1). Nevertheless, the huge volume variation of Bi anode during (de)sodiation processes can cause the pulverization of Bi particulates and rupture of solid electrolyte interphase (SEI), resulting in quick capacity decay. It is demonstrated that rigid carbon framework and robust SEI are two essentials for stable Bi anodes. A lignin-derived carbonlayer wrapped tightly around the bismuth nanospheres provides a stable conductive pathway, while the delicate selection of linear and cyclic ether-based electrolytes enable robust and stable SEI films. These two merits enable the long-term cycling process of the LC-Bi anode. The LC-Bi composite delivers outstanding sodium-ion storage performance with an ultra-long cycle life of 10 000 cycles at a high current density of 5 A g−1 and an excellent rate capability of 94% capacity retention at an ultrahigh current density of 100 A g−1. Herein, the underlying origins of performance improvement of Bi anode are elucidated, which provides a rational design strategy for Bi anodes in practical SIBs.  相似文献   

17.
We have employed hot wire chemical vapor deposition (HWCVD) for the generation of MoO3 nanostructures at high density. Furthermore, the morphology of the nanoparticles is easily tailored by altering the HWCVD synthesis conditions. The MoO3 nanoparticles have been demonstrated as high-capacity Li-ion battery anodes for next-generation electric vehicles. Specifically, the MoO3 anodes have been shown to have approximately three times the Li-ion capacity of commercially employed graphite anodes in thick electrodes suitable for vehicular applications. However because the materials are high volume expansion materials (≥ 100%), conformal Al2O3 coatings deposited with atomic layer deposition (ALD) were required before high rate capability was demonstrated. Recently, NREL is exploring high capacity Si anode materials that have a volume expansion of ~ 400%. It is assumed that new ALD coatings will need to be developed in order to stabilize Si as an anode material. Silicon is a superior choice for an anode material to the metal oxide structures due to both a higher capacity and a significantly lower hysteresis in the voltage vs. Li/Li+ for the charge/discharge profiles.  相似文献   

18.
Zinc metal has considerable potential as a high-energy anode material for aqueous batteries due to its high theoretical capacity and environmental friendliness. However, dendrite growth and parasitic reactions at the electrode/electrolyte interface remain two serious problems for the Zn metal anode. Here, the heterostructured interface of ZnO rod array and CuZn5 layer is fabricated on the Zn substrate (ZnCu@Zn) to address these two issues. The zincophilic CuZn5 layer with abundant nucleation sites ensures the initial uniform Zn nucleation process during cycling. Meanwhile, the ZnO rod array grown on the surface of the CuZn5 layer can guide the subsequent homogeneous Zn deposition via spatial confinement and electrostatic attraction effects, leading to the dendrite-free Zn electrodeposition process. Consequently, the derived ZnCu@Zn anode exhibits an ultra-long lifespan of up to 2500 h with symmetric cells at the current density and capacity of 0.5 mA cm−2/0.5 mA h cm−2. Besides, a remarkable cyclability (75% retention for 2500 cycles at 2 A g−1) is achieved in the ZnCu@Zn||MnO2 full cell with a capacity of 139.7 mA h g−1. This heterostructured interface with specific functional layers provides a feasible strategy for the design of high-performance metal anodes.  相似文献   

19.
Zhang  Ying  Liu  Boyang  Hitz  Emily  Luo  Wei  Yao  Yonggang  Li  Yiju  Dai  Jiaqi  Chen  Chaoji  Wang  Yanbin  Yang  Chunpeng  Li  Hongbian  Hu  Liangbing 《Nano Research》2017,10(4):1356-1365
Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells.However,growth of Li dendrites,unstable solid electrolyte interphases,low Coulombic efficiencies,and safety hazards have significantly hindered the practical application of metallic Li anodes.Herein,we propose a three-dimensional (3D) carbon nanotube sponge (CNTS) as a Li deposition host.The high specific surface area of the CNTS enables homogenous charge distribution for Li nucleation and minimizes the effective current density to overcome dendrite growth.An additional conformal A12O3 layer on the CNTS coated by atomic layer deposition (ALD) robustly protects the Li metal electrode/electrolyte interface due to the good chemical stability and high mechanical strength of the layer.The Li@ALD-CNTS electrode exhibits stable voltage profiles with a small overpotential ranging from 16 to 30 mV over 100 h of cycling at 1.0 mA·cm-2.Moreover,the electrodes display a dendrite-free morphology after cycling and a Coulombic efficiency of 92.4% over 80 cycles at 1.0 mA·cm-2 in an organic carbonate electrolyte,thus demonstrating electrochemical stability superior to that of planar current collectors.Our results provide an important strategy for the rational design of current collectors to obtain stable Li metal anodes.  相似文献   

20.
Heterostructured electrodes have gained increasing attentions owing to the synergistic effects from individual building components and the unique interfaces. However, rational design and controllable fabrication of high areal capacity and durable phosphorus-based heterostructure anode for industry remains a critical challenge. Herein, a new red@black phosphorus core–shell heterostructure anchored on three-dimensional N-doped graphene (RP@BP/3DNG) has been prepared via a facile one-step solvothermal strategy. As demonstrated by experimental data and theoretical calculations, RP@BP/3DNG shows a superior high electronic conductivity and an extremely low Na+ diffusion barrier due to the build-in filed at the RP@BP heterointerface, thus RP@BP/3DNG delivers an ultra-high areal capacity of 3.46 mAh cm−2 (1440.2 mAh/g at 0.05 A/g), impressive rate performance (521.3 mAh/g at 10.0 A/g) as well as unprecedented capacity retention rate of 89.3% after 1200 cycles at 10.0 A/g when evaluated as an anode for sodium ion batteries (SIBs). Furthermore, the internal electric field at the interfaces of RP@BP leads to the shift of electron cloud from BP to RP, which greatly suppresses the reaction activity of lone-pair electrons of BP atoms, and therefore RP@BP/3DNG shows much enhanced air stability. This work heralds a new insight for designing high-performance and stable P-based anodes for rechargeable batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号