首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new compound material of 2D hydrofluorinated graphene (HFG) is demonstrated whose relative hydrogen/fluorine concentrations can be tailored between the extremes of either hydrogenated graphene (HG) and fluorinated graphene (FG). The material is fabricated through subsequent exposures to indirect hydrogen plasma and xenon difluoride (XeF2). Controlling the relative concentration in the HFG compound enables tailoring of material properties between the extremes offered by the constituent materials and in‐plane patterning produces micrometer‐scale regions with different surface properties. The utility of the technique to tailor the surface wettability, surface friction, and electrical conductivity is demonstrated. HFG compounds display wettability between the extremes of pure FG with contact angle of 95° ± 5° and pure HG with contact angle of 42° ± 2°. Similarly, the HFG surface friction may be tailored between the two extremes. Finally, the HFG electrical conductivity tunes through five orders of magnitude when transitioning from FG to HG. When combined with simulation, the electrical measurements reveal the mechanism producing the compound to be a dynamic process of adatom desorption and replacement. This study opens a new class of 2D compound materials and innovative chemical patterning with applications for atomically thin 2D circuits consisting of chemically/electrically modulated regions.  相似文献   

2.
The interface between two-dimensional (2D) materials and soft, stretchable polymeric substrates is a governing criterion in proposed 2D materials-based flexible devices. This interface is dominated by weak van der Waals forces and there is a large mismatch in elastic constants between the contact materials. Under dynamic loading, slippage, and decoupling of the 2D material is observed, which then leads to extensive damage propagation in the 2D lattice. Herein, graphene is functionalized through mild and controlled defect engineering for a fivefold increase in adhesion at the graphene-polymer interface. Adhesion is characterized experimentally using buckling-based metrology, while molecular dynamics simulations reveal the role of individual defects in the context of adhesion. Under in situ cyclic loading, the increased adhesion inhibits damage initiation and interfacial fatigue propagation within graphene. This work offers insight into achieving dynamically reliable and robust 2D material-polymer contacts, which can facilitate the development of 2D materials-based flexible devices.  相似文献   

3.
4.
Disorder-induced magnetoresistance (MR) effect is quadratic at low perpendicular magnetic fields and linear at high fields. This effect is technologically appealing, especially in 2D materials such as graphene, since it offers potential applications in magnetic sensors with nanoscale spatial resolution. However, it is a great challenge to realize a graphene magnetic sensor based on this effect because of the difficulty in controlling the spatial distribution of disorder and enhancing the MR sensitivity in the single-layer regime. Here, a room-temperature colossal MR of up to 5000% at 9 T is reported in terraced single-layer graphene. By laminating single-layer graphene on a terraced substrate, such as TiO2-terminated SrTiO3, a universal one order of magnitude enhancement in the MR compared to conventional single-layer graphene devices is demonstrated. Strikingly, a colossal MR of >1000% is also achieved in the terraced graphene even at a high carrier density of ≈1012 cm−2. Systematic studies of the MR of single-layer graphene on various oxide- and non-oxide-based terraced surfaces demonstrate that the terraced structure is the dominant factor driving the MR enhancement. The results open a new route for tailoring the physical property of 2D materials by engineering the strain through a terraced substrate.  相似文献   

5.
Supercritical CO2 (SC CO2), as one of the unique fluids that possess fascinating properties of gas and liquid, holds great promise in chemical reactions and fabrication of materials. Building special nanostructures via SC CO2 for functional applications has been the focus of intense research for the past two decades, with facile regulated reaction conditions and a particular reaction field to operate compared to the more widely used solvent systems. In this review, the significance of SC CO2 on fabricating various functional materials including modification of 1D carbon nanotubes, 2D materials, and 2D heterostructures is stated. The fundamental aspects involving building special nanostructures via SC CO2 are explored: how their structure, morphology, and chemical composition be affected by the SC CO2. Various optimization strategies are outlined to improve their performances, and recent advances are combined to present a coherent understanding of the mechanism of SC CO2 acting on these functional nanostructures. The wide applications of these special nanostructures in catalysis, biosensing, optoelectronics, microelectronics, and energy transformation are discussed. Moreover, the current status of SC CO2 research, the existing scientific issues, and application challenges, as well as the possible future directions to advance this fertile field are proposed in this review.  相似文献   

6.
During the last 10 years, remarkable achievements on the chemical vapor deposition (CVD) growth of 2D materials have been made, but the understanding of the underlying mechanisms is still relatively limited. Here, the current progress on the understanding of the growth kinetics of 2D materials, especially for their CVD synthesis, is reviewed. In order to present a complete picture of 2D materials' growth kinetics, the following factors are discussed: i) two types of growth modes, namely attachment‐limited growth and diffusion‐limited growth; ii) the etching of 2D materials, which offers an additional degree of freedom for growth control; iii) a number of experimental factors in graphene CVD synthesis, such as structure of the substrate, pressure of hydrogen or oxygen, temperature, etc., which are found to have profound effects on the growth kinetics; iv) double‐layer and few‐layer 2D materials' growth, which has distinct features different from the growth of single‐layer 2D materials; and v) the growth of polycrystalline 2D materials by the coalescence of a few single crystalline domains. Finally, the current challenges and opportunities in future 2D materials' synthesis are summarized.  相似文献   

7.
Photodynamic therapy(PDT),as one of the noninvasive clinical cancer phototherapies,suffers from the key drawback associated with hypoxia at the tumor microenvironment(TME),which plays an important role in protecting tumor cells from damage caused by common treatments.High concentration of hydrogen peroxide(H2O2),one of the hallmarks of TME,has been recognized as a double-edged sword,posing both challenges,and opportunities for cancer therapy.The promising perspectives,strategies,and approaches for enhanced tumor therapies,including PDT,have been developed based on the fast advances in H2O2-enabled theranostic nanomedicine.In this review,we outline the latest advances in H2O2-responsive materials,including organic and inorganic materials for enhanced PDT.Finally,the challenges and opportunities for further research on H2O2-responsive anticancer agents are envisioned.  相似文献   

8.
2D materials with atomic thickness display strong gate controllability and emerge as promising materials to build area-efficient electronic circuits. However, achieving the effective and nondestructive modulation of carrier density/type in 2D materials is still challenging because the introduction of dopants will greatly degrade the carrier transport via Coulomb scattering. Here, a strategy to control the polarity of tungsten diselenide (WSe2) field-effect transistors (FETs) via introducing hexagonal boron nitride (h-BN) as the interfacial dielectric layer is devised. By modulating the h-BN thickness, the carrier type of WSe2 FETs has been switched from hole to electron. The ultrathin body of WSe2, combined with the effective polarity control, together contribute to the versatile single-transistor logic gates, including NOR, AND, and XNOR gates, and the operation of only two transistors as a half adder in logic circuits. Compared with the use of 12 transistors based on static Si CMOS technology, the transistor number of the half adder is reduced by 83.3%. The unique carrier modulation approach has general applicability toward 2D logic gates and circuits for the improvement of area efficiency in logic computation.  相似文献   

9.
Layered graphene oxide membranes (GOMs) offer a unique platform for precise sieving of small ions and molecules due to controlled sub-nanometer-wide interlayer distance and versatile surface chemistry. Pristine and chemically modified GOMs effectively block organic dyes and nanoparticles, but fail to exclude smaller ions with hydrated diameters less than 9 Å. Toward sieving of small inorganic salt ions, a number of strategies are proposed by reducing the interlayer spacing down to merely several angstroms. However, one critical challenge for such compressed GOMs is the extremely low water flux (<0.1 Lm−2 h−1 bar−1) that prevents these innovative nanomaterials from being used in real-world applications. Here, a planar heterogeneous graphene oxide membrane (PHGOM) with both nearly perfect salt rejection and high water flux is reported. Horizontal ion transport through oppositely charged GO multilayer lateral heterojunction exhibits bi-unipolar transport behavior, blocking the conduction of both cations and anions. Assisted by a forward electric field, salt concentration is depleted in the near-neutral transition area of the PHGOM. In this situation, deionized water can be extracted from the depletion zone. Following this mechanism, a high rejection rate of 97.0% for NaCl and water flux of 1529 Lm−2 h−1 bar−1 at the outlet via an inverted T-shaped water extraction mode are achieved.  相似文献   

10.
Neural interfaces are becoming a powerful toolkit for clinical interventions requiring stimulation and/or recording of the electrical activity of the nervous system. Active implantable devices offer a promising approach for the treatment of various diseases affecting the central or peripheral nervous systems by electrically stimulating different neuronal structures. All currently used neural interface devices are designed to perform a single function: either record activity or electrically stimulate tissue. Because of their electrical and electrochemical performance and their suitability for integration into flexible devices, graphene‐based materials constitute a versatile platform that could help address many of the current challenges in neural interface design. Here, how graphene and other 2D materials possess an array of properties that can enable enhanced functional capabilities for neural interfaces is illustrated. It is emphasized that the technological challenges are similar for all alternative types of materials used in the engineering of neural interface devices, each offering a unique set of advantages and limitations. Graphene and 2D materials can indeed play a commanding role in the efforts toward wider clinical adoption of bioelectronics and electroceuticals.  相似文献   

11.
Recently, diverse functional materials that take subcellular structures as therapeutic targets are playing increasingly important roles in cancer therapy. Here, particular emphasis is placed on four kinds of therapies, including chemotherapy, gene therapy, photodynamic therapy (PDT), and hyperthermal therapy, which are the most widely used approaches for killing cancer cells by the specific destruction of subcellular organelles. Moreover, some non‐drug‐loaded nanoformulations (i.e., metal nanoparticles and molecular self‐assemblies) with a fatal effect on cells by influencing the subcellular functions without the use of any drug molecules are also included. According to the basic principles and unique performances of each treatment, appropriate strategies are developed to meet task‐specific applications by integrating specific materials, ligands, as well as methods. In addition, the combination of two or more therapies based on multifunctional nanostructures, which either directly target specific subcellular organelles or release organelle‐targeted therapeutics, is also introduced with the intent of superadditive therapeutic effects. Finally, the related challenges of critical re‐evaluation of this emerging field are presented.  相似文献   

12.
Micromachines are at the forefront of materials research as they are self‐propelled, smart autonomous systems capable of acting as an intelligent matter. One of the obstacles the field faces is tracking individual micromachines carrying molecular cargo from the rest of the micromachines. Highly stable fluorescent markers based on chemically modified 2D germanene compounds are developed. Two different 2D germanene derivatives, 4‐fluorophenylgermanane (2D‐Ph‐Ge) and methylgermanane (2D‐Me‐Ge), exhibit different fluorescence under UV light irradiation (excitation at 365 nm), which allows one particular micromotor to be easily distinguished in a mixture of micromotors. This offers a paradigm shift toward a new approach of multiplex detection of self‐propelled micromachines. The utility is demonstrated on a drug delivery system, where micromachines carrying a drug are labeled with 2D‐Ph‐Ge with blue emission while bare micromachines are labeled by 2D‐Me‐Ge with red emission. This approach of functional fluorescent labeling will pave the way to multiple simultaneous functionalized micromachines identification in complex environments.  相似文献   

13.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

14.
Herein, a supermolecular‐scale cage‐confinement pyrolysis strategy is proposed to build two dielectric electromagnetic wave absorbents, in which MoO2 nanoparticles are sandwiched uniformly between porous carbon shells and reduced graphene oxide (RGO). Both sandwich structures are derived from hybrid hydrogels doped by two different crosslinkers (with/without oxygen bridge), which can precisely confine Mo source (e.g., PMo12). Without adding magnetic components, both absorbents exhibit excellent low frequency absorption performance in combination with electrically tunable ability and enhanced reflection loss value, which is superior over other relative 2D dielectric absorbers and satisfies the requirements of portable electronics. Notably, introducing oxygen bridges in the crosslinker generates a more stable confining configuration, which in turn renders its corresponding derivative exhibiting an extra multifrequency electromagnetic wave absorption trait. The intrinsic electromagnetic wave adjustment mechanism of the ternary hybrid absorbent is also explored. The result reveals that the elevated electromagnetic wave absorbing property is attributed to moderate attenuation constant and glorious impendence matching. The cage‐confinement pyrolysis route to fabricate 2D MoO2‐based dielectric electromagnetic wave absorbents opens a new path for the design of electromagnetic wave absorbents used in multi/low frequency.  相似文献   

15.
Optical nonlinearity in 2D materials excited by spatial Gaussian laser beam is a novel and peculiar optical phenomenon, which exhibits many novel and interesting applications in optical nonlinear devices. Passive photonic devices, such as optical switches, optical logical gates, photonic diodes, and optical modulators, are the key compositions in the future all‐optical signal‐processing technologies. Passive photonic devices using 2D materials to achieve the device functionality have attracted widespread concern in the past decade. In this Review, an overview of the spatial self‐phase modulation (SSPM) in 2D materials is summarized, including the operating mechanism, optical parameter measurement, and tuning for 2D materials, and applications in photonic devices. Moreover, some current challenges are also proposed to solve, and some possible applications of SSPM method are predicted for the future. Therefore, it is anticipated that this summary can contribute to the application of 2D material‐based spatial effect in all‐optical signal‐processing technologies.  相似文献   

16.
17.
The bottom‐up integration of a 1D–2D hybrid semiconductor nanostructure into a vertical field‐effect transistor (VFET) for use in flexible inorganic electronics is reported. Zinc oxide (ZnO) nanotubes on graphene film is used as an example. The VFET is fabricated by growing position‐ and dimension‐controlled single crystal ZnO nanotubes vertically on a large graphene film. The graphene film, which acts as the substrate, provides a bottom electrical contact to the nanotubes. Due to the high quality of the single crystal ZnO nanotubes and the unique 1D device structure, the fabricated VFET exhibits excellent electrical characteristics. For example, it has a small subthreshold swing of 110 mV dec?1, a high Imax/Imin ratio of 106, and a transconductance of 170 nS µm?1. The electrical characteristics of the nanotube VFETs are validated using 3D transport simulations. Furthermore, the nanotube VFETs fabricated on graphene films can be easily transferred onto flexible plastic substrates. The resulting components are reliable, exhibit high performance, and do not degrade significantly during testing.  相似文献   

18.
2D materials have attracted considerable attention due to their exciting optical and electronic properties, and demonstrate immense potential for next‐generation solar cells and other optoelectronic devices. With the scaling trends in photovoltaics moving toward thinner active materials, the atomically thin bodies and high flexibility of 2D materials make them the obvious choice for integration with future‐generation photovoltaic technology. Not only can graphene, with its high transparency and conductivity, be used as the electrodes in solar cells, but also its ambipolar electrical transport enables it to serve as both the anode and the cathode. 2D materials beyond graphene, such as transition‐metal dichalcogenides, are direct‐bandgap semiconductors at the monolayer level, and they can be used as the active layer in ultrathin flexible solar cells. However, since no 2D material has been featured in the roadmap of standard photovoltaic technologies, a proper synergy is still lacking between the recently growing 2D community and the conventional solar community. A comprehensive review on the current state‐of‐the‐art of 2D‐materials‐based solar photovoltaics is presented here so that the recent advances of 2D materials for solar cells can be employed for formulating the future roadmap of various photovoltaic technologies.  相似文献   

19.
As new 2D layered nanomaterials, Bi2O2Se nanoplates have unique semiconducting properties that can benefit biomedical applications. Herein, a facile top‐down approach for the synthesis of Bi2O2Se quantum dots (QDs) in a solution is described. The Bi2O2Se QDs with a size of 3.8 nm and thickness of 1.9 nm exhibit a high photothermal conversion coefficient of 35.7% and good photothermal stability. In vitro and in vivo assessments demonstrate that the Bi2O2Se QDs possess excellent photoacoustic (PA) performance and photothermal therapy (PTT) efficiency. After systemic administration, the Bi2O2Se QDs accumulate passively in tumors enabling efficient PA imaging of the entire tumors to facilitate imaging‐guided PTT without obvious toxicity. Furthermore, the Bi2O2Se QDs which exhibit degradability in aqueous media not only have sufficient stability during in vivo circulation to perform the designed therapeutic functions, but also can be discharged harmlessly from the body afterward. The results reveal the great potential of Bi2O2Se QDs as a biodegradable multifunctional agent in medical applications.  相似文献   

20.
The understanding of confined structure and flow property of ionic liquid (IL) in a nanochannel are essential for the efficient application of ILs in the green chemical processes. In this work, the ionic structure and various flow behaviors of ILs inside graphene nanochannels via molecular dynamics simulations are shown. The effect of the nanochannel structure on confined flow is explored, showing that the width mainly heightens the viscosity while the oxidation degree primarily enhances the interfacial friction coefficient. Tuning the width and oxidation degree of nanochannel, three different flow behaviors including Poiseuille, partial plunger and full plunger flow can be achieved, where the second one does not occur in water or other organic solvents. To describe the special flow behavior, an effective influence extent of the nanochannel (w EIE) is defined, whose value can distinguish the above flows effectively. Based on w EIE, the phase diagrams of flow behavior for the nanochannel structure and pressure gradient are obtained, showing that the critical pressure gradient decreases with width and increases with the oxidation degree. Based on the quantitative relations between confined structures, viscosity, friction coefficient, flow behavior, and nanochannel structure, the intrinsic mechanism of regulating the flow behavior and rational design of nanochannel are finally discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号