首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High-quality carrier-selective contacts with suitable electronic properties are a prerequisite for photovoltaic devices with high power conversion efficiency (PCE). In this work, an efficient electron-selective contact, titanium oxynitride (TiOxNy), is developed for crystalline silicon (c-Si) and organic photovoltaic devices. Atomic-layer-deposited TiOxNy is demonstrated to be highly conductive with a proper work function (4.3 eV) and a wide bandgap (3.4 eV). Thin TiOxNy films simultaneously provide a moderate surface passivation and enable a low contact resistivity on c-Si surfaces. By implementation of an optimal TiOxNy-based contact, a state-of-the-art PCE of 22.3% is achieved for a c-Si solar cell featuring a full-area dopant-free electron-selective contact. Simultaneously, conductive TiOxNy is proven to be an efficient electron-transport layer for organic photovoltaic (OPV) devices. A remarkably high PCE of 17.02% is achieved for an OPV device with an electron-transport TiOxNy layer, which is superior to conventional ZnO-based devices with a PCE of 16.10%. Atomic-layer-deposited TiOxNy ETL on a large area with a high uniformity may help accelerate the commercialization of emerging solar technologies.  相似文献   

2.
The specific contact resistance of the screen-printed Ag contacts in the silicon solar cells has been investigated by applying two independent test methodologies such as three-point probe (TPP) and well-known transfer length model (TLM) test structure respectively. This paper presents some comparative results obtained with these two measurement techniques for the screen-printed Ag contacts formed on the porous silicon antireflection coating (ARC) in the crystalline silicon solar cells. The contact structure consists of thick-film Ag metal contacts patterned on the top of the etched porous silicon surface. Five different contact formation temperatures ranging from 725 to 825 °C for few minutes in air ambient followed by a short time annealing step at about 450 °C in nitrogen ambient was applied to the test samples in order to study the specific contact resistance of the screen-printed Ag metal contact structure. The specific contact resistance of the Ag metal contacts extracted based on the TPP as well as TLM test methodologies has been compared and verified. It shows that the extraction procedure based on the TPP method results in specific contact resistance, ρ c  = 2.15 × 10−6 Ω-cm2 indicating that screen-printed Ag contacts has excellent ohmic properties whereas in the case of TLM method, the best value of the specific contact resistance was found to be about ρ c  = 8.34 × 10−5 Ω-cm2. These results indicate that the ρ c value extracted for the screen-printed Ag contacts by TPP method is one order of magnitude lower than that of the corresponding value of the ρ c extracted by TLM method. The advantages and limitations of each of these techniques for quantitatively evaluating the specific contact resistance of the screen-printed Ag contacts are also discussed.  相似文献   

3.
The SEM and specific contact resistance measurements of the Ag metal contact formed by applying a fire-through process on the shallow emitter region of the silicon solar cell have been investigated. The metal contact consists of screen-printed Ag paste patterned on the silicon nitride (Si3N4) deposited over the n+-Si emitter region of the solar cell. The sintering step consists of a rapid firing step at 800 °C or above in air ambient. This is followed by an annealing step at 450 °C in nitrogen ambient. It enables to drive the Ag metal paste onto the Si3N4 layer and facilitates the formation of an Ag metal/p-Si contact structure. It serves as the top metallization for the screen-printed silicon solar cell. The SEM measurement shows that sintering of the Ag metal paste at 800 °C or above causes the Ag metal to firmly coalesce with the underlying n+-Si surface. A thin layer of conductive glassy layer is also presents at the interface of the Ag metal and n+-Si surface. The electrical quality of the contact structure was characterized by measuring the specific contact resistance, ρ c (in Ω-cm2) using the iteration technique based on the power loss calculation for the solar cell. It shows that best value of ρ c  = 2.53 × 10−5 Ω-cm2 is estimated for the Ag metal contact sintered at temperature above 800 °C. This value of ρ c is two orders of magnitude lower than the typical value of ρ c  = 3 × 10−3 Ω-cm2 reported previously for the Ag contacts of the solar cell. Such low value of ρ c for the Ag metal contacts indicates that fire-through process results in excellent ohmic properties. The plot of the ρ c versus impurity doping level (N s ) shows that measured value of the ρ c follows a linear relationship with the N s as predicted by the theory for the heavily doped semiconductor surface. Hence, carrier injection across the Schottky barrier height is quite appropriate to explain the observed ohmic properties of the Ag metal contacts on the n+-Si surface of the silicon solar cell.
P. N. VinodEmail:
  相似文献   

4.
Phosphorous-doped microcrystalline silicon (μc-Si) films were prepared using hot-wire chemical vapor deposition (HWCVD). Structural, electrical and optical properties of these thin films were systematically studied as a function of PH3 gas mixture ratio. We report recent results for p-type crystalline silicon-based heterojunction (HJ) solar cells using the HWCVD n-μc-Si film to form an n-p junction. The surface morphology of the crystalline Si substrate after hydrogen treatment was examined using atomic force microscopy. A transfer length method was used to modify the indium-tin-oxide (ITO) deposition parameters in order to reduce front ITO/n-μc-Si contact resistance. In our best solar cell sample (1 cm2) without any buffer layer, the conversion efficiency of 15.1% has been achieved with an open circuit voltage of 0.615 V, fill factor of 0.71 and short circuit current density of 34.6 mA/cm2 under 100 mW/cm2 condition. The spectral response of this cell will also be discussed.  相似文献   

5.
Quantitative estimation of the specific contact resistivity and energy barrier at the interface between transparent conducting oxide (TCO) and hydrogenated p-type amorphous silicon carbide (a-Si1 − xCx:H(p)) was carried out by inserting an interfacial buffer layer of hydrogenated p-type microcrystalline silicon (μc-Si:H(p)) or hydrogenated p-type amorphous silicon (a-Si:H(p)). In addition, superstrate configuration p-i-n hydrogenated amorphous silicon (a-Si:H) solar cells were fabricated by plasma enhanced chemical vapor deposition to investigate the effect of the inserted buffer layer on the solar cell device. Ultraviolet photoelectron spectroscopy was employed to measure the work functions of the TCO and a-Si1 − xCx:H(p) layers and to allow direct calculations of the energy barriers at the interfaces. Especially interface structures were compared with/without a buffer which is either highly doped μc-Si:H(p) layer or low doped a-Si:H(p) layer, to improve the contact properties of aluminum-doped zinc oxide and a-Si1 − xCx:H(p). Out of the two buffers, the superior contact properties of μc-Si:H(p) buffer could be expected due to its higher conductivity and slightly lower specific contact resistivity. However, the overall solar cell conversion efficiencies were almost the same for both of the buffered structures and the resultant similar efficiencies were attributed to the difference between the fill factors of the solar cells. The effects of the energy barrier heights of the two buffered structures and their influence on solar cell device performances were intensively investigated and discussed with comparisons.  相似文献   

6.
Porous silicon has been considered as a promising optoelectronic material for developing a variety of optoelectronic devices and sensors. In the present study, the electrical properties and metallurgical process of the screen-printed Ag metallization formed on the porous silicon surface of the silicon solar cell have been investigated. The contact structure consists of thick-film Ag metal contact patterned on the top of the porous silicon surface. The sintering process consists of a rapid firing step at 750–825 °C in air ambient. It results in the formation of a nearly perfect contact structure between the Ag metal and porous silicon/p-Si structure that forms the top metalization for the screen-printed silicon solar cells. The SEM picture shows that Ag metal firmly coalesces with the silicon surface with a relatively smooth interfacial morphology. This implies that high temperature fire-through step has not introduced any signs of adverse effect of junction puncture or excessive Ag indiffusion, etc. The three-point probe (TPP) method was applied to estimate the specific contact resistance, ρ c (Ω-cm2) of the contact structure. The TPP measurement shows that contact structure has excellent ohmic properties with ρ c = 1.2 × 10−6 Ω-cm2 when the metal contact sintered at 825 °C. This value of the specific contact resistance is almost three orders of magnitude lower than the corresponding value of the ρ c = 7.35 × 10−3 Ω-cm2 obtained for the contact structure sintered at 750 °C. This improvement in the specific contact resistance indicates that with increase in the sintering temperature, the barrier properties of the contact structure at the interface of the Ag metal and porous silicon structure improved which in turn results a lower specific contact resistance of the contact structure.  相似文献   

7.
Nanocomposite Ni(1 − x)/(SiO2)x soft magnetic materials were synthesized by a simple sol–gel combined hydrogen reduction method. The crystal structure of the particles was determined by X-ray diffraction (XRD). The shapes and sizes of the metal particles embedded in the SiO2 matrix were determined by transmission electron microscopy (TEM), and magnetic properties were measured by the vibrating samples magnetometer (VSM). The obtained nanocomposite material is composed of nanoparticles coated with a thin SiO2 layer, and with the content of the silicon increase, the thickness of the silica shells increase and the saturation magnetization decrease. The diameter of Ni particle in the sample is about 30–40 nm. The influence of the Ni content and preparation conditions on the microstructures and magnetic properties were discussed.  相似文献   

8.
The establishment of a suitable contact formation methodology is a critical part of the technological development of any metal-to-semiconductor contact structure. Many test structures and methodologies have been proposed to estimate the specific contact resistance (ρc) of the planar ohmic contacts formed on the heavily doped semiconductor surface. These test structures are usually processed on the same wafer to monitor a particular process. In this study, new experimental procedure has been evolved to assess the value of ρc of the screen-printed front silver (Ag) thick-film metal contact to the silicon surface. The essential feature of this methodology is that it is an iteration technique based on the calculation of power loss associated with various resistive components of the solar cell normalized to the unit cell area. Therefore, this method avoids the complexity of making the design of any lay out of a standard contact resistance test structure like transmission line model (TLM) or Kelvin resistor, etc. It was shown that value of specific contact resistance of the order of 1.0 × 10−5 Ω−cm 2 is measured for the Ag metal contacts formed on the n+ silicon surface. This value is much lower than the ρc data previously reported for the screen-printed Ag contacts. The sintering process of the front metal contact structure at different furnace setting is carried out to understand the possible wet interaction and metal contact formation as a function of the firing. Therefore, the study is further extended to study the peak firing temperature dependence of the ρc of screen-printed Ag metal contacts. It will help to assess the specific contact resistance of the ohmic contacts as a function of firing temperature of sintering process.
P. N. VinodEmail:
  相似文献   

9.
Electrospun fibrous membranes of hybrid composites of polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN) and silicon dioxide (SiO2) (PVdF–PAN–SiO2) are prepared with different proportions of SiO2 (3, 5 and 7% w/w). The field emission scanning electron microscopy (FE-SEM) reveals that these membranes have three-dimensional, fully interconnected network structures, which are combined with micropores of fine SiO2 distribution. The surface roughness of the membranes increases with increasing the SiO2 content. It is found that 7 wt% SiO2/PVdF–PAN electrolyte membrane has the highest ionic conductivity (6.96 × 10−2 S cm−1) due to the large liquid electrolyte uptake (about 570%). As the concentration of SiO2 nanoparticles increase, the contact angle value also increases, ranging from 135.70° to 140.60° which indicates that the membrane has higher hydrophobicity. The dye sensitized solar cells (DSSCs) are fabricated using the hybrid composite membrane with PVdF–PAN with 7 wt % SiO2. Its photovoltaic performance exhibits an open circuit voltage (Voc) of 0.79 V and a short circuit current 11.6 mA cm−2 at an incident light intensity of 100 mW cm−2, producing an efficiency of 5.61%. DSSC, using the hybrid composite electrospun membrane which shows more stable photovoltaic performance than other assembled DSSCs.  相似文献   

10.
Oxygen-impurity boron-doped hydrogenated microcrystalline silicon (p-μc-Si:Ox:H) films have been deposited using catalytic chemical vapor deposition (Cat-CVD). Pure silane (SiH4), hydrogen (H2), oxygen (O2), and diluted diborane (B2H6) gases were used. The tungsten catalyst temperature (Tfil) was varied from 1900 to 2100 °C and films were deposited on glass substrates at temperatures of 100 to 300 °C. Different catalyst-to-substrate distances were employed and single- or double-coiled filaments were used. In addition to p-μc-Si:Ox:H deposition, we have also deposited conventional p-type microcrystalline silicon (p-μc-Si:H) in order to compare their electrical and optical properties to p-μc-Si:Ox:H.  相似文献   

11.
Industrial applicable fine-line double printing and nickel plating method was applied to single crystalline silicon (c-Si) solar cells. As the finger widths decreased, the efficiency and short circuit current density (JSC) linearly increased. Although the increase of the JSC was caused by the reduction of shadowing loss due to the decrease of finger width, the fill factor (FF) was slowly decreased due to increase of contact resistance. The FF of the cells using the fine line was enhanced by using a double printing and nickel plating. c-Si solar cells with the dimensions of 12.5 cm × 12.5 cm, double printed finger width of 50 μm due to spreadability of paste, a finger spacing of 2.4 μm, and aluminum back surface field were fabricated, achieving an increase of JSC and efficiencies of up to about 0.62 mA/cm2 and 0.38% compared to a reference cell at 79.8% of the FF, respectively.  相似文献   

12.
We present recent progress on hot-wire deposited thin film solar cells and applications of silicon nitride. The cell efficiency reached for μc-Si:H n-i-p solar cells on textured Ag/ZnO presently is 8.5%, in line with the state-of-the-art level for μc-Si:H n-i-p's for any method of deposition. Such cells, used in triple junction cells together with hot-wire deposited proto-Si:H and plasma-deposited SiGe:H, have reached 10.5% efficiency. The single junction μc-Si:H n-i-p cell is entirely stable under prolonged light soaking. The triple junction cell, including protocrystalline i-layers, is within 3% stable, due to the limited thicknesses of the two top cells. The application of SiNx:H at a deposition rate of 3 nm/s to polycrystalline Si wafer solar cells has led to cells with 15.7% efficiency. We have also achieved record high deposition rates of 7.3 nm/s for transparent and dense SiNx;H. Hot-wire SiNx:H is likely to be the first large commercial application of the Hot Wire CVD (Cat-CVD) technology.  相似文献   

13.
In this study, nanocomposite material consisting of silicon suboxide (SiOx) film embedded with gold nanoparticles (Au NPs) was synthesized using hybrid technique combining hot wire evaporation and plasma enhanced chemical vapour deposition (PECVD) method. As prepared Au/SiOx films were rapid thermal annealed at constant temperature of 800 °C for different annealing times from 30 to 120 s. The use of tungsten filament for Au evaporation allowed the effective reduction of the silicon content. Depth profiling analysis confirmed the embedded in structure of Au/SiOx film. FESEM, UV/VIS/NIR and PL spectroscopy were utilized to study the structural and optical properties of annealed Au/SiOx film for different times. Embedded Au NPs diffused towards the surface of SiOx film agglomerate and increased in size with an increase in annealing time. Localized surface plasmon resonance (LSPR) peak induced by Au NPs in SiOx, which is dependent on annealing time, was clearly observed in optical spectra. Intensity and position of the PL peak located at 580 nm experienced a decrease and red-shift, as annealing time increased.  相似文献   

14.
One of the most promising solution for crystalline silicon surface passivation in solar cell fabrication consists in a low temperature (< 400 °C) Plasma Enhanced Chemical Vapor Deposition of a double layer composed by intrinsic hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon nitride (SiNx). Due to the high amount of hydrogen in the gas mixture during the double layer deposition, the passivation process results particularly useful in case of multi-crystalline silicon substrates in which hydrogenation of grain boundaries is very needed. In turn the presence of hydrogen inside both amorphous layers can induce metastability effects. To evaluate these effects we have investigated the stability of the silicon surface passivation obtained by the double layer under ultraviolet light exposure. In particular we have verified that this double layer is effective to passivate both p- and n-type crystalline silicon surface by measuring minority carrier high lifetime, via photoconductance-decay. To get better inside the passivation mechanisms, strongly connected to the charge laying inside the SiNx layer, we have collected the Infrared spectra of the SiNx/a-Si:H/c-Si structures and we have monitored the capacitance-voltage profiles of Al/SiNx/a-Si:H/c-Si Metal Insulator Semiconductor structures at different stages of UltraViolet (UV) light exposure. Finally we have verified the stability of the double passivation layer applied to the front side of solar cell devices by measuring their photovoltaic parameters during the UV light exposure.  相似文献   

15.
Energy Dispersive X-ray and X-ray Photoelectron (XPS) spectroscopies show that SiO x films deposited by reactive r.f. magnetron sputtering at partial pressure ratios R between oxygen and argon in a wide range (1–0.005) have compositions close to the stoichiometric one. For these films high temperature annealing at 1,000 °C shifts the band in the Fourier Transform-Infrared spectrum due to the Si–O–Si stretching vibration to values typical of stoichiometric SiO2. Further decrease of R leads to splitting of the Si 2p XPS line indicating increase of the Si content and formation of a second phase in a SiO2 matrix. The electrical properties of test MOS structures with SiO x gate dielectric, regarding defect density in the oxide and at the SiO x /c-Si interface, degrade with the decrease of R. High temperature annealing at 1,000 °C strongly improves the properties of all films regarding leakage current and properties of the interface.  相似文献   

16.
In this paper, we firstly optimized the properties of n-SiOx nanocrystalline thin film through tuning deposition parameters by plasma enhanced chemical vapor deposition, so that we can actively control the properties of materials obtained. Secondly, we proposed using n-SiOx/Al as back reflector for amorphous silicon (a-Si:H) solar cells. Compared to Al single-layer as back reflector, adding an n-SiOx layer into the back reflector could improve the solar cell performance, which not only enhances the short circuit current density by an improvement of spectral response in the wavelength range of 550-750 nm, but also improves the open circuit voltage. With an optimized n-SiOx/Al back reflector, a-Si:H solar cells with an intrinsic layer thickness of 270 nm show 13.1% enhancement in efficiency. In addition, a-Si:H/μc-Si:H tandem solar cells with n-SiOx as intermediate reflector were also researched. As a result, it evidently balanced the current matching between top and bottom cell.  相似文献   

17.
To optimize the performance of microcrystalline silicon carbide (µc-SiC:H) window layers in n-i-p type microcrystalline silicon (µc-Si:H) solar cells, the influence of the rhenium filament temperature in the hot wire chemical vapor deposition process on the properties of µc-SiC:H films and corresponding solar cells were studied. The filament temperature TF has a strong effect on the structure and optical properties of µc-SiC:H films. Using these µc-SiC:H films prepared in the range of TF = 1800-2000 °C as window layers in n-side illuminated µc-Si:H solar cells, cell efficiencies of above 8.0% were achieved with 1 µm thick µc-Si:H absorber layer and Ag back reflector.  相似文献   

18.
We use a new in-house, large area and automated deposition system: the usable deposition area is 410 × 520 mm with RF-frequency of 40 MHz. We deposit intrinsic a-Si:H layer on flat p-type or n-type c-Si wafers after performing an HF dip. The overall recombination of these double-side passivated c-Si wafers is measured with an effective lifetime measurement set-up. We pay particular attention to the uniformity of the passivation obtained on the whole deposition area.We point out a major role of hydrogen dilution on quality of c-Si passivation. Excellent uniformity is obtained on the whole area with implied open-circuit voltages (Voc) in a ± 1.5% range. We achieve excellent passivation with overall lifetimes approaching 7 ms (at Δn ≈ 4.5·1014 cm− 3) resulting in implied Voc of 708 mV on p-type c-Si; and lifetimes superior to 4.7 ms resulting in implied Voc of 726 mV on n-type c-Si (Seff less than 2 cm/s for both). These results open the way to very high efficiency heterojunction solar cell fabrication in large area reactors.  相似文献   

19.
Values of thermal power factor S2/ρ at room temperature and its variation with temperature have been studied for mixed crystals of tungsten dichalcogenides i.e. WSxSe2−x (0 ≤ x ≤ 2) synthesized in single crystal form by a chemical vapour transport technique. Photoelectrochemical (PEC) solar cells have also been fabricated using this material. Various solar cell parameters e.g. open circuit voltage (Voc), short circuit current (Isc), fill factor (FF) and efficiency (η) have been determined for the entire series of WSxSe2−x. All results on thermoelectric and PEC behaviour have been carefully studied and their implications have been thoroughly discussed.  相似文献   

20.
Silicon oxide (SiOx) thin films have been deposited at a substrate temperature of 300 °C by inductively-coupled plasma chemical vapor deposition (ICP-CVD) using N2O/SiH4 plasma. The effect of N2O/SiH4 flow ratios on SiOx film properties and silicon surface passivation were investigated. Initially, the deposition rate increased up to the N2O/SiH4 flow ratio of 2/1, and then decreased with the further increase in N2O/SiH4 flow ratio. Silicon oxide films with refractive indices of 1.47-2.64 and high optical band-gap values (>3.3 eV) were obtained by varying the nitrous oxide to silane gas ratios. The measured density of the interface states for films was found to have minimum value of 4.3 × 1011 eV−1 cm−2. The simultaneous highest τeff and lowest density of interface states indicated that the formation of hydrogen bonds at the SiOx/c-Si interface played an important role in surface passivation of p-type silicon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号