共查询到20条相似文献,搜索用时 15 毫秒
1.
Han Tian Xu Yu Weimin Huang Ziwei Chang Fenglai Pei Jiangdong Zhou Ningning Dai Ge Meng Chang Chen Xiangzhi Cui Jianlin Shi 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(42):2303061
Developing anode catalysts with substantially enhanced activity for hydrogen oxidation reaction (HOR) and CO tolerance performance is of great importance for the commercial applications of proton exchange membrane fuel cells (PEMFCs). Herein, an excellent CO-tolerant catalyst (Pd-WO3/C) has been fabricated by loading Pd nanoparticles on WO3 via an immersion-reduction route. A remarkably high power density of 1.33 W cm−2 at 80 °C is obtained by using the optimized 3Pd-WO3/C as the anode catalyst of PEMFCs, and the moderately reduced power density (73% remained) in CO/H2 mixed gas can quickly recover after removal of CO-contamination from hydrogen fuel, which is not possible by using Pt/C or Pd/C as anode catalyst. The prominent HOR activity of 3Pd-WO3/C is attributed to the optimized interfacial electron interaction, in which the activated H* adsorbed on Pd species can be effectively transferred to WO3 species through hydrogen spillover effect and then oxidized through the H species insert/output effect during the formation of HxWO3 in acid electrolyte. More importantly, a novel synergetic catalytic mechanism about excellent CO tolerance is proposed, in which Pd and WO3 respectively absorbs/activates CO and H2O, thus achieving the CO electrooxidation and re-exposure of Pd active sites for CO-tolerant HOR. 相似文献
2.
多孔材料的储氢性能研究是氢能经济发展的重要课题之一,然而其室温下的储氢性能还不能满足氢存储系统的所有要求。氢溢流被证明是提高多孔材料在室温下储氢性能的有效方法。主要从氢溢流产生的方法及其优缺点,氢溢流在碳基纳米材料、沸石、金属有机骨架和共价有机骨架等多孔材料储氢性能研究中的最新动态进行了详细综述,并指出了当前存在的问题和今后的发展方向。 相似文献
3.
针对TiO2表面活性位点不足、反应动力学缓慢、CO2还原产物中碳氢化合物的产率低以及选择性差等问题,研究通过Pd催化氧还原法在缺氧环境中构筑了具有表面氧空位的一维单晶TiO2纳米带阵列(Pd-Ov-TNB)。通过形貌结构、载流子行为及光催化性能分析,探究了表面氧空位和Pd的氢溢流效应对光生载流子分离传输及还原产物选择性的影响。结果表明,Pd-Ov-TNB的CO2还原活性强,产物中CH4、C2H6和C2H4的产率分别为40.8、32.09和3.09μmol·g-1·h-1,碳氢化合物的选择性高达84.52%,在C-C偶联方面展现出巨大的潜力。其一维单晶纳米带结构提高了材料的活性比表面积和结晶度,为CO2还原反应提供了更多的活性位点,并加速载流子的分离传输。同时,氧空位增强了光生电荷的表面积累,为CO2还原提... 相似文献
4.
Jiexian Liu;Peifang Guo;Da Liu;Xiaoxiao Yan;Xin Tu;Hongge Pan;Renbing Wu; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(37):2400783
Endowing conventional materials with specific functions that are hardly available is invariably of significant importance but greatly challenging. TiO2 is proven to be highly active for the photocatalytic hydrogen evolution while intrinsically inert for electrocatalytic hydrogen evolution reaction (HER) due to its poor electrical conductivity and unfavorable hydrogen adsorption/desorption behavior. Herein, the first activation of inert TiO2 for electrocatalytic HER is demonstrated by synergistically modulating the positions of d-band center and triggering hydrogen spillover through the dual doping-induced partial phase transition. The N, F co-doping-induced partial phase transition from anatase to rutile phase in TiO2 (AR-TiO2|(N,F)) exhibits extraordinary HER performance with overpotentials of 74, 80, and 142 mV at a current density of 10 mA cm–2 in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M phosphate-buffered saline electrolytes, respectively, which are substantially better than pure TiO2, and even superior to the benchmark Pt/C catalysts. These findings may open a new avenue for the development of low-cost alternative to noble metal catalysts for electrocatalytic hydrogen production. 相似文献
5.
Haijie Cai Na Luo Xiaowu Wang Mengmeng Guo Xiaojie Li Bo Lu Zhenggang Xue Jiaqiang Xu 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(42):2302652
Palladium (Pd)-modified metal oxide semiconductors (MOSs) gas sensors often exhibit unexpected hydrogen (H2) sensing activity through a spillover effect. However, sluggish kinetics over a limited Pd-MOS surface seriously restrict the sensing process. Here, a hollow Pd-NiO/SnO2 buffered nanocavity is engineered to kinetically drive the H2 spillover over dual yolk-shell surface for the ultrasensitive H2 sensing. This unique nanocavity is found and can induce more H2 absorption and markedly improve kinetical H2 ab/desorption rates. Meanwhile, the limited buffer-room allows the H2 molecules to adequately spillover in the inside-layer surface and thus realize dual H2 spillover effect. Ex situ XPS, in situ Raman, and density functional theory (DFT) analysis further confirm that the Pd species can effectively combine H2 to form Pd-H bonds and then dissociate the hydrogen species to NiO/SnO2 surface. The final Pd-NiO/SnO2 sensors exhibit an ultrasensitive response (0.1–1000 ppm H2) and low actual detection limit (100 ppb) at the operating temperature of 230 °C, which surpass that of most reported H2 sensors. 相似文献
6.
氢原子的量子尺寸效应新理论 总被引:1,自引:8,他引:1
根据实么正变换理论 ,并结合SU ( 1,1)Lie代数 ,对氢原子的量子尺寸效应进行详细研讨。结果表明 ,氢原子的能级和波函数随时间变化的规律较复杂 ,并且是精确的 相似文献
7.
Aili Zhao;Xiaochen Yang;Junjie Wang;Guohui Li;Shuai Wang;Ping Li;Jingui Wang;Wei Hu;Xiliang Luo;Min Cui; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(52):2405488
Coordination environment of metal atoms is core for designing high-performance single-atom catalysts (SACs), while metal-support interaction also has an important effect on structure-function relationship. Nevertheless, the interaction effect of metal-support is mostly ignored. Through synergistic regulation of coordination environment and metal-support interaction, Mn SAC with atom-dispersed Mn–N2 sites on dopamine (DA) support is synthesized for sensitive and selective DA oxidation based on theoretical calculations and experimental explorations. MnN2 presents the more optimal catalytic site for DA oxidation than other coordination conditions, enhancing sensitivity including a wide range, a low limit of detection, and particularly a very low catalytic potential. The construction of Mn–N2 active sites on DA carbon promotes the coupling between Mn metal atoms and DA support, decreasing work function, facilitating electron exchange, shortening response time, and boosting selectivity. Both the catalytic mechanism of Mn SAC toward DA and the relation construction of catalyst's structure and catalytic function are established. 相似文献
8.
Yaqian Li;Xi Cao;Qingqing Chen;Rongrong Pan;Jian Zhang;Ge Meng;Yun Yang;Yapeng Li;Junjie Mao;Wei Chen; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(49):2405367
Developing efficient electrocatalysts for CO2 reduction to CO within a broad potential range is meaningful for cascade application integration. In this work, hydrogen spillover is created and utilized to cultivate a proton-rich environment via the simple thermolysis of a Ni-doped Zn coordination polymer (Zn CPs (Ni)) to create asymmetric Ni single atoms co-located with adjacent Ni nanoclusters on nitrogen-doped carbon, termed as NiNC&SA/N-C, which expedites the hydrogenation of adsorbed CO2. Therefore, the sample demonstrates near-unity CO2-to-CO conversion efficiency under pH-universal conditions in ultra-wide potential windows: −0.39 to −2.05 V versus RHE with the current densities ranging from 0.1 to 1.0 A cm−2 in alkaline conditions, −0.83 to −2.40 V versus RHE from 0.1 to 0.9 A cm−2 in neutral environments, and −0.98 to −2.25 V versus RHE across 0.1 to 0.8 A cm−2 in acid conditions. Corresponding in situ measurements and density functional theory (DFT) calculations suggest that the enhanced H2O dissociation and more efficient hydrogen spillover on NiNC&SA/N-C (compared to NiSA/N-C) accelerate the protonation of adsorbed CO2 to form *COOH intermediates. This work emphasizes the significant role of proton spillover in CO2RR, opening novel avenues for designing high-performance catalysts applicable to various electrocatalytic processes. 相似文献
9.
John C. Douglin;Archana Sekar;Ramesh K. Singh;Zihua Chen;Jun Li;Dario R. Dekel; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(20):2307497
The availability of durable, high-performance electrocatalysts for the hydrogen oxidation reaction (HOR) is currently a constraint for anion-exchange membrane fuel cells (AEMFCs). Herein, a rapid microwave-assisted synthesis method is used to develop a core–shell catalyst support based on a hydrogenated TiO2/carbon for PtRu nanoparticles (NPs). The hydrogenated TiO2 provides a strong metal-support interaction with the PtRu NPs, which improves the catalyst's oxophilicity and HOR activity compared to commercial PtRu/C and enables greater size control of the catalyst NPs. The as-synthesized PtRu/TiO2/C-400 electrocatalyst exhibits respectable performance in an AEMFC operated at 80 °C, yielding the highest current density (up to 3× higher) within the catalytic region (compared at 0.80–0.90 V) and voltage efficiency (68%@ 0.5 A cm−2) values in the compared literature. In addition, the cell demonstrates promising short-term voltage stability with a minor voltage decay of 1.5 mV h−1. This “first-of-its-kind in alkaline” work may open further research avenues to develop rapid synthesis methods to prepare advanced core–shell metal-oxide/carbon supports for electrocatalysts for use in the next-generation of AEMFCs with potential applicability to the broader electrochemical systems research community. 相似文献
10.
用机械混合法制备含有不同质量分数铂的活性炭,研究了压电材料PMN-PT产生的电荷对含铂活性炭氢气吸附性能的影响。结果表明,在高压氢气条件下PMN-PT产生的电荷能增强铂和活性炭颗粒对氢气分子的吸附,并加速氢气分子的解离和氢原子的扩散,使含铂活性炭的储氢量明显提高。铂产生的氢溢流作用有效地提高了活性炭的氢气吸附量。在室温和8 MPa氢气压力条件下PMN-PT使活性炭(NAC)氢气吸附量产生的增长幅度为15%,使含有质量分数0.83%、1%和1.25%铂的活性炭氢气吸附量增长的幅度分别为36.5%、39.3%和43.9%。 相似文献
11.
采用气相沉积法制得分子筛封装SnO2纳米粒子,通过XRD、UV-Vis、FS等手段对制备的样品进行了表征,封装在分子筛内部的SnO2团簇的发射光谱中,不存在与吸收带边相对应的发射,其发光类型不属于电子-空穴复合发光,而归结为缺陷发光,复合材料表现出了显著的量子尺寸效应。 相似文献
12.
V、Fe对TiMn2储氢合金性能的影响 总被引:1,自引:0,他引:1
为改善TiMn2储氢合金的吸放氢性能,采用Fe或Fe、V取代合金中的部分Mn元素进行合金化改性。XRD(X-ray diffraction)分析表明Fe和V的同时引入使合金的相组成由TiMn1-2转变为TiMn1-2和δMnV相共存。P-C-T(Pressure-composition-temperature)测试结果表明,部分Mn被取代后合金吸放氢的滞后效应减小,储氢量提高。根据不同温度下的P-C-T测试结果求出吸氢焓变和熵变值,TiFe0.1Mn1.9和TiFe0.1V0.2Mn1.7合金的吸氢焓变分别为-36.9kJ/molH2和-21.9kJ/molH2。 相似文献
13.
Yury S. Nechaev N. M. Alexandrova N. A. Shurygina A. O. Cheretaeva 《Fullerenes, Nanotubes and Carbon Nanostructures》2020,28(3):233-237
AbstractSome experimental evidences and the physics (thermodynamics) of the nanoscale self-intercalation of high-density gaseous molecular hydrogen (ρ?≈?0.045?g/cm3, T?≈?300?K) into surface nanoclusters in highly oriented pyrolytic graphite and epitaxial graphene, as well as the nanoscale self-intercalation of high density solid molecular hydrogen (ρ?≈?0.5?g/cm3, T?≈?300?K, the compressed pressure ~ 0.5 Mbar) into graphite nanofibers are considered, with regard to the problem of compact and efficient hydrogen on-board storage and other clean energy applications. Perspectives of further developments of these results are considered, as well. 相似文献
14.
Kazuki Shun;Satoshi Matsukawa;Kohsuke Mori;Hiromi Yamashita; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(19):2306765
The phenomenon of hydrogen spillover is investigated as a means of realizing a hydrogen-based society for over half a century. Herein, a graphene oxide having a precisely tuned architecture via calcination in air to introduce ether groups onto basal planes along with carbon defects is reported. This material provides specific pathways for the spillover of atomic hydrogen and has practical applications with regard to the synthesis of non-equilibrium solid-solution alloy nanoparticles. A combination of experimental work and simulations confirmed that the presence of ether groups associated with carbon defects facilitated hydrogen spillover within the basal planes of this graphene oxide. This enhanced hydrogen spillover ability, in turn, enables the simultaneous reduction of Ru3+ and Ni2+ ions to form RuNi alloy nanoparticles under hydrogen reduction conditions. Energy dispersive X-ray and X-ray absorption near edge structure simulations establish that this strategy forms unique alloy nanoparticles each comprising a Ru core with a RuNi solid-solution shell having a hexagonal close-packed structure. These non-equilibrium RuNi alloy nanoparticles exhibit greater catalytic activity than monometallic Ru nanoparticles during the hydrolysis of ammonia borane. 相似文献
15.
Yanyun Zhang;Wenhao Yu;Hao Zhang;Yue Shi;Jiawei Zhu;Tiantian Wang;Yuyao Sun;Tianrong Zhan;Jianping Lai;Lei Wang; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(11):2308440
Under the high current density, the excessive strong adsorption of H* intermediates and H2 accumulation the catalysts are the major obstacle to the industrial application of hydrogen evolation reaction (HER) catalysts. Herein, through experimental exploration, it is found that the superaerophobic Nitrogen (N)-doped carbon material can promote the rapid release of H2 and provide H* desorption site for the hydrogen spillover process, which makes it have great potential as the catalysts support for hydrogen spillover. Based on this discovery, this work develops the hydrogen spillover catalyst with electron-rich Pt sites loaded on N-doped carbon nanocage (N-CNC) with adjustable work function. Through a series of comprehensive electrochemical tests, the existence of hydrogen spillover effort has been proved. Moreover, the in situ tests showed that pyrrolic-N can activate adjacent carbon sites as the desorption sites for hydrogen spillover. The Pt@N-1-CNC with the minimum work function difference (ΔΦ) between Pt NPs and support shows superior hydrogen evolution performance, only needs overpotential of 12.2 mV to reach current density of 10 mA cm−2, outstanding turnover frequency (TOF) (44.7 s−1@100 mV) and superior durability under the 360 h durability tests at current density of 50 mA cm−2. 相似文献
16.
Lisha Yin Xiao Hai Kun Chang Fumihiko Ichihara Jinhua Ye 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(14)
Generally, exfoliation is an efficient strategy to create more edge site so as to expose more active sites on molybdenum disulphide (MoS2). However, the lateral sizes of the resultant MoS2 monolayers are relatively large (≈50–500 nm), which retain great potential to release more active sites. To further enhance the catalytic performance of MoS2, a facile cascade centrifugation‐assisted liquid phase exfoliation method is introduced here to fabricate monolayer enriched MoS2 nanosheets with nanoscale lateral sizes. The as‐prepared MoS2 revealed a high monolayer yield of 36% and small average lateral sizes ranging from 42 to 9 nm under gradient centrifugations, all exhibiting superior catalytic performances toward photocatalytic H2 generation. Particularly, the optimized monolayer MoS2 with an average lateral size of 9 nm achieves an apparent quantum efficiency as high as 77.2% on cadmium sulphide at 420 nm. This work demonstrates that the catalytic performances of MoS2 could be dramatically enhanced by synergistic exfoliation and lateral size engineering as a result of increased density of active sites and shortened charge diffusion distance, paving a new way for design and fabrication of transition‐metal dichalcogenides‐based materials in the application of hydrogen generation. 相似文献
17.
Guichu Yue Yu Yu Shuai Li Huaike Li Songwei Gao Yaqiong Wang Wei Guo Nü Wang Xiuling Li Zhimin Cui Changyan Cao Lei Jiang Yong Zhao 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(11):2207918
It is highly desired but challenging to design high performance catalyst for selective hydrogenation of nitro compounds into amino compounds. Herein, a boosting chemoselective hydrogenation strategy on Pt@Fe2O3 is proposed with gradient oxygen vacancy by synergy of hydrogen spillover and preferential adsorption. Experimental and theoretical investigations reveal that the nitro is preferentially adsorbed onto oxygen vacancy of Pt@Fe2O3, meanwhile, the H2 dissociated on Pt nanoparticles and then spillover to approach the nitro for selective hydrogenation (>99% conversion of 4-nitrostyrene, > 99% selectivity of 4-aminostyrene, TOF of 2351 h−1). Moreover, the iron oxide support endows the catalyst magnetic retrievability. This high activity, selectivity, and easy recovery strategy provide a promising avenue for selective hydrogenation catalysis of various nitroaromatic. 相似文献
18.
Zhiqian Hou Chenghao Cui Yanan Yang Tao Zhang 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(29):2370224
Electrochemical oxidization and thermodynamic instability agglomeration are a primary challenge in triggering metal-support interactions (MSIs) by immobilizing metal atoms on a carrier to achieve efficient oxygen evolution reactions (OER). Herein, Ru clusters anchored to the VS2 surface and the VS2 nanosheets embedded vertically in carbon cloth (Ru-VS2@CC) are deliberately designed to realize high reactivity and exceptional durability. In situ Raman spectroscopy reveals that the Ru clusters are preferentially electro-oxidized to form RuO2 chainmail, both affording sufficient catalytic sites and protecting the internal Ru core with VS2 substrates for consistent MSIs. Theoretical calculations elucidate that electrons across the Ru/VS2 interface aggregate toward the electro-oxidized Ru clusters, while the electronic coupling of Ru 3p and O 2p orbitals boosts a positive shift in the Fermi energy level of Ru, optimizing the adsorption capacity of the intermediates and diminishing the migration barriers of the rate-determining steps. Therefore, the Ru-VS2@CC catalyst demonstrated ultra-low overpotentials of 245 mV at 50 mA cm−2, while the zinc–air battery maintained a narrow gap (0.62 V) after 470 h of reversible operation. This work has transformed the corrupt into the miraculous and paved a new way for the development of efficient electrocatalysts. 相似文献
19.
20.
Kanghong Wang;Yi Tao;Zikun Tang;Xiaolan Xu;Daniele Benetti;François Vidal;Haiguang Zhao;Federico Rosei;Xuhui Sun; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(16):2306453
Colloidal quantum dots (QDs) are shown to be effective as light-harvesting sensitizers of metal oxide semiconductor (MOS) photoelectrodes for photoelectrochemical (PEC) hydrogen (H2) generation. The CdSe/CdS core/shell architecture is widely studied due to their tunable absorption range and band alignment via engineering the size of each composition, leading to efficient carrier separation/transfer with proper core/shell band types. However, until now the effect of core size on the PEC performance along with tailoring the core/shell band alignment is not well understood. Here, by regulating four types of CdSe/CdS core/shell QDs with different core sizes (diameter of 2.8, 3.1, 3.5, and 4.8 nm) while the thickness of CdS shell remains the same (thickness of 2.0 ± 0.1 nm), the Type II, Quasi-Type II, and Type I core/shell architecture are successfully formed. Among these, the optimized CdSe/CdS/TiO2 photoelectrode with core size of 3.5 nm can achieve the saturated photocurrent density (Jph) of 17.4 mA cm−2 under standard one sun irradiation. When such cores are further optimized by capping alloyed shells, the Jph can reach values of 22 mA cm2 which is among the best-performed electrodes based on colloidal QDs. 相似文献