首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here this approach is extended to synthesize rod‐like gold nanoparticles in a full DNA controlled manner. The approach is based on DNA molds containing elongated cavities. Gold is deposited inside the molds using a seeded‐growth procedure. By carefully exploring the growth parameters it is shown that gold nanostructures with aspect ratios of up to 7 can be grown from single seeds. The highly anisotropic growth is in this case controlled only by the rather soft and porous DNA walls. The optimized seeded growth procedure provides a robust and simple routine to achieve continuous gold nanostructures using DNA templating.  相似文献   

2.
Palladium nanoparticles (PdNPs), as a platinum substitute, have opened many new opportunities for future catalytic applications, especially in fuel cell reactions, because of its comparable catalytic properties. In the present study, a simple and “green” procedure to the synthesis of PdNPs with cauliflower-like and polyhedron-like shapes is demonstrated. The novel PdNPs were prepared by the reduction of palladium chloride with ascorbic acid in the presence of chitosan served as a capping agent, whose shapes can be effectively controlled by varying reaction temperatures. Surface-enhanced Raman scattering (SERS) investigation demonstrated that the more irregular PdNPs have the stronger SERS activities. We believe that the PdNPs with unique shapes may find practical applications for electronics, photonics, fuel cells, and biofuel cells.  相似文献   

3.
Green approaches have the potential to significantly reduce the costs and environmental impact of chemical syntheses. Here, the authors used green tea (GT) leaf extract to synthesise and anchor palladium nanoparticles (PdNPs) to silica. The synthesised PdNPs in GT extract were characterised by ultraviolet–visible spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction, and transmission electron microscopy. PdNPs primarily formed as capped NPs dispersed in GT extract before reduction completed after 24 h. This capped phytochemical solution was employed as a green precursor solution to synthesise PdNP‐embedded solid supports. The morphology of PdNPs anchored to silica differed to that of PdNPs in solution. Silica‐embedded PdNPs was employed as a new ligand exchanger to isolate trace polycyclic aromatic sulphur heterocycles from a hydrocarbon matrix. The isolation efficiency of the new, greener ligand exchanger was the same as an efficient chemical ligand exchanger and may, therefore, hold promise for future applications.Inspec keywords: nanofabrication, palladium, visible spectra, transmission electron microscopy, nanoparticles, reduction (chemical), ultraviolet spectra, X‐ray diffraction, Fourier transform infrared spectra, surface morphologyOther keywords: ultraviolet–visible spectroscopy, Fourier‐transform infrared spectroscopy, transmission electron microscopy, phytochemical solution, green precursor solution, PdNP‐embedded solid supports, solid support‐embedded PdNPs, green tea leaf extract, chemical ligand exchanger, anchor palladium nanoparticles, X‐ray diffraction, isolate trace polycyclic aromatic sulphur heterocycles, hydrocarbon matrix, green synthesis, time 24.0 hour, Pd  相似文献   

4.
There is a growing demand for the development of non‐toxic, cost‐effective, and environmentally benign green synthetic strategy for the production of metal nanoparticles. Herein, the authors have reported Actinodaphne madraspatana Bedd (AMB) leaves as the bioreducing agent for the synthesis of palladium nanoparticles (PdNPs) and its catalytic activity was evaluated for the reduction of 4‐nitrophenol (4‐NP) to 4‐aminophenol with undisruptive effect on human health and environment. The broad and continuous absorbance spectrum obtained in the UV–visible region indicated the formation of PdNPs. The synthesized PdNPs were found to be crystalline, spherical, and quasi‐spherical in shape with an average particle size of 13 nm was confirmed by X‐ray diffractometer and transmission electron microscope. Fourier transform infrared spectra revealed the active photo constituents present in the aqueous extract of AMB involved in the bioreduction of palladium ions to PdNPs. The catalytic activity of biosynthesized PdNPs was demonstrated for the reduction of 4‐NP via electron‐relay process. Also, the influential parameters such as catalyst dosage, concentration of 4‐NP, and sodium borohydride were studied in detail. From the present study, PdNPs were found to be a potential nanocatalyst for nitro compound reduction and also for environmental remediation of wastewater effluents from industries.Inspec keywords: palladium, nanoparticles, particle size, nanofabrication, catalysis, catalysts, reduction (chemical), organic compounds, ultraviolet spectra, visible spectra, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectraOther keywords: nitro compound reduction, environmental remediation, wastewater effluents, Pd, nanocatalyst, sodium borohydride, 4‐NP concentration, catalyst dosage, electron‐relay process, bioreduction, aqueous extract, Fourier transform infrared spectra, transmission electron microscopy, X‐ray diffractometry, particle size, quasispherical shape, spherical shape, crystalline shape, UV‐visible abosprtion spectra, human environment, human health, 4‐aminophenol, catalytic activity, bioreducing agent, metal nanoparticles, Actinodaphne madraspatana Bedd leaves‐mediated palladium nanoparticles, 4‐nitrophenol, catalytic reduction  相似文献   

5.
Biocomputation is the algorithmic manipulation of biomolecules. Nanostructures, most notably DNA nanostructures and nanoparticles, become active substrates for biocomputation when modified with stimuli‐responsive, programmable biomolecular ligands. This approach—biocomputing with nanostructures (“nano‐bio computing”)—allows autonomous control of matter and information at the nanoscale; their dynamic assemblies and beneficial properties can be directed without human intervention. Recently, lipid bilayers interfaced with nanostructures have emerged as a new biocomputing platform. This new nano‐bio interface, which exploits lipid bilayers as a chemical circuit board for information processing, offers a unique reaction space for realizing nanostructure‐based computation at a previously unexplored dimension. In this Concept, recent advances in nano‐bio computing are briefly reviewed and the newly emerging concept of biocomputing with nanostructures on lipid bilayers is introduced.  相似文献   

6.
This review reports fabrication methods for ordered metallic nanostructures such as nanowires and nanoparticles based on deoxyribonucleic acid (DNA) templates. The phosphate groups in DNA are negatively charged; consequently, the DNA conformation may mineralize metals, e.g., palladium (Pd) at a relatively high metal concentration. We successfully form unique spherically shaped moss-like hybrid Pd nanoparticles using the small compacted globular state of DNA by controlling the reductive reaction. Pd can absorb hydrogen to become PdHx, and hydrogen storage increases the electrical resistance and volume of Pd materials. Hence, the use of this material is attracting growing interest as a reliable, cheap, ultracompact, and safe hydrogen sensor. Pd–DNA hybrid nanoparticles can be used as highly sensitive hydrogen sensors, which exhibit a switch response that depends on the volume expansion in a cyclic atmosphere exchange. This paper also shows the fabrications of Pd–carbon nanotube (CNT) hybrid nanostructures.  相似文献   

7.
DNA has been extensively used as a versatile template to assemble inorganic nanoparticles into complex architectures; thanks to its programmability, stability, and long persistence length. But the geometry of self‐assembled nanostructures depends on a complex combination of attractive and repulsive forces that can override the shape of a molecular scaffold. In this report, an approach to increase the morphological stability of DNA‐templated gold nanoparticle (AuNP) groupings against electrostatic interactions is demonstrated by introducing hydrophobicity on the particle surface. Using single nanostructure spectroscopy, the nanometer‐scale distortions of 40 nm diameter AuNP dimers are compared with different hydrophilic, amphiphilic, neutral, and negatively charged surface chemistries, when modifying the local ionic strength. It is observed that, with most ligands, a majority of studied nanostructures deform freely from a stretched geometry to touching particles when increasing the salt concentration while hydrophobicity strongly limits the dimer distortions. Furthermore, an amphiphilic surface chemistry provides DNA‐linked AuNP dimers with a high long‐term stability against internal aggregation.  相似文献   

8.
Dynamic and reconfigurable systems that can sense and react to physical and chemical signals are ubiquitous in nature and are of great interest in diverse areas of science and technology. DNA is a powerful tool for fabricating such smart materials and devices due to its programmable and responsive molecular recognition properties. For the past couple of decades, DNA‐based self‐assembly is actively explored to fabricate various DNA–organic and DNA–inorganic hybrid nanostructures with high‐precision structural control. Building upon past development, researchers have recently begun to design and assemble dynamic nanostructures that can undergo an on‐demand transformation in the structure, properties, and motion in response to various external stimuli. In this Review, recent advances in dynamic DNA nanostructures, focusing on hybrid structures fabricated from DNA‐conjugated molecules, polymers, and nanoparticles, are introduced, and their potential applications and future perspectives are discussed.  相似文献   

9.
应用DNA模版自组装CdS纳米线   总被引:1,自引:0,他引:1  
近年来,由于具有双螺旋补偿结构,DNA分子作为智能模版被广泛应用于设计棒状或管状类的纳米结构.本文报道了应用DNA双螺旋模版将CdS纳米粒子自组装为CdS纳米线.制备的CdS纳米线由几根纳米线紧密缠绕在一起,也呈螺旋形结构,该结构在无机材料中是很少见的.该结构形成的主要原因归功于CdS纳米粒子和DNA分子间的强烈静电互作用,由于含自由基的CdS纳米粒子带负电荷,而氨基的DNA核酸根带正电荷.研究结果表明应用DNA模版制备纳米线是一种简便、高效的技术和方法.同时,DNA模版法也为从底上制备纳米级的材料和物体提供了广阔的空间.  相似文献   

10.
The use of seeded or pretreated substrates has been reported as a feasible way to control the morphology, texture and orientation of ZnO structures during hydrothermal growth. However, in a typical seeding procedure, high energy-consumption, high-cost, complexity and/or specific substrates are by now required. Electrophoretic deposition (EPD) is a soft solution process that may allow avoiding such problems of classical seeding procedures. In this work, the combination of these two soft solution processing techniques, EPD and hydrothermal growth, has been studied for growing ZnO nanostructures onto stainless steel substrates. The use of ZnO seed layers deposited by EPD as a way to control the evolution of ZnO structures during hydrothermal growth is discussed, showing that the seeding and its nature have an effect on the number of nucleation sites and consequently on the size and morphology of the obtained structures.  相似文献   

11.
Highly dispersed poly(amic acid) salt-stabilised palladium nanoparticles(PdNPs/PAAS) were synthesised via a facile reduction strategy in aqueous media at room temperature and characterised by transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and inductively coupled plasma optical emission spectrometer. The nanoparticles were used as catalyst for Suzuki–Miyaura coupling reaction to synthesise biphenyl compounds in short reaction time and high yields under mild conditions, benefiting from highly efficient quasi-homogeneous catalytic activity. The catalyst could be recycled 5 times without obvious loss attributing to the pH response of the PAAS.  相似文献   

12.
Great opportunities emerge not only in the generation of anisotropic plasmonic nanostructures but also in controlling their orientation relative to incident light. Herein, a stepwise seeded growth method is reported for the synthesis of rod‐shaped plasmon nanostructures which are vertically self‐aligned with respect to the surface of colloidal substrates. Anisotropic growth of metal nanostructure is achieved by depositing metal seeds onto the surface of colloidal substrates and then selectively passivating the seed surface to induce symmetry breaking in the subsequent seed‐mediated growth process. The versatility of this method is demonstrated by producing nanoparticle dimers and linear trimers of Au, Au–Ag, Au–Pd, and Au–Cu2O. Further, this unique method enables the automatic vertical alignment of the resulting plasmonic nanostructures to the surface of the colloidal substrate, thereby making it possible to design magnetic/plasmonic nanocomposites that allow the dynamic tuning of the plasmon excitation by controlling their orientation using an external magnetic field. The controlled anisotropic growth of colloidal plasmonic nanostructures and their dynamic modulation of plasmon excitation further allow them to be conveniently fixed in a thin polymer film with a well‐controlled orientation to display polarization‐dependent patterns that may find important applications in information encryption.  相似文献   

13.
We propose an integrated top-down and bottom-up approach to single-step nanofabrication of complex nanostructures made of different materials. The process, termed lithographically controlled etching (LCE), starts with a drop of an etching solution cast on the surface to be patterned. By placing a polymeric mold on the substrate, the stamp protrusions come into contact with the surface, thus protecting it, whereas the surface beneath the mold recesses is exposed to a thin layer of etching solution, allowing the surface to be etched. By dispersing nanoparticles into the etching solution, these can be deposited and self-organize in the recesses on the substrate as these are excavated. We demonstrate here the fabrication of complex structures and nanowires 30 nm wide. Moreover, by exploiting capillary forces, it is possible to deposit nanoparticles at precise positions with respect to optically addressable microstructures, thus realizing a multiscale functional pattern.  相似文献   

14.
Many cancers show primary or acquired drug resistance due to the overexpression of efflux pumps. A novel mechanism to circumvent this is to integrate drugs, such as anthracycline antibiotics, with nanoparticle delivery vehicles that can bypass intrinsic tumor drug‐resistance mechanisms. DNA nanoparticles serve as an efficient binding platform for intercalating drugs (e.g., anthracyclines doxorubicin and daunorubicin, which are widely used to treat acute leukemias) and enable precise structure design and chemical modifications, for example, for incorporating targeting capabilities. Here, DNA nanostructures are utilized to circumvent daunorubicin drug resistance at clinically relevant doses in a leukemia cell line model. The fabrication of a rod‐like DNA origami drug carrier is reported that can be controllably loaded with daunorubicin. It is further directly verified that nanostructure‐mediated daunorubicin delivery leads to increased drug entry and retention in cells relative to free daunorubicin at equal concentrations, which yields significantly enhanced drug efficacy. Our results indicate that DNA origami nanostructures can circumvent efflux‐pump‐mediated drug resistance in leukemia cells at clinically relevant drug concentrations and provide a robust DNA nanostructure design that could be implemented in a wide range of cellular applications due to its remarkably fast self‐assembly (≈5 min) and excellent stability in cell culture conditions.  相似文献   

15.
Discrete DNA nanostructures allow simultaneous features not possible with traditional DNA forms: encapsulation of cargo, display of multiple ligands, and resistance to enzymatic digestion. These properties suggested using DNA nanostructures as a delivery platform. Here, DNA pyramids displaying antisense motifs are shown to be able to specifically degrade mRNA and inhibit protein expression in vitro, and they show improved cell uptake and gene silencing when compared to linear DNA. Furthermore, the activity of these pyramids can be regulated by the introduction of an appropriate complementary strand. These results highlight the versatility of DNA nanostructures as functional devices.  相似文献   

16.
Oxidized nickel nanoparticles ranging from 2 to 3 nm have been grown on a DNA template. The synthesized products have been characterized by AFM and XPS. The results showed that uniformly oxidized nickel nanoparticles can be grown and assembled on a DNA template. These assembled small NiO nanostructures may have some potential application as catalysts, magnetic materials or electrochromic films. Theoretically, this synthetic method can be applied to fabricate other metals on a DNA template.  相似文献   

17.
The desire and need for various types of nanostructures have been met with challenges of feasibility, reproducibility, and long fabrication time. To work towards improved bottom-up methods of nanofabrication, we use bacterial flagella as bio-templates for fabricating silica-mineralized nanotubes, which are ideal for the formation of metal nanoparticles or metal oxide nanoparticles. In this study, we show that silica nanotubes formed from flagella templates can be coated with gold, palladium, and iron oxide nanoparticles under mild aqueous conditions. The process was accomplished through reactions including reductive metallization or oxidative hydrolysis. Morphology and chemical composition were analyzed by transmission electron microscopy and energy dispersive X-ray spectroscopy, respectively. The results from these studies provide evidence for the complete coating of silica nanotubes with metal nanoparticles using a simple and fast procedure.  相似文献   

18.
This paper describes a class of three component hybrid nanowires templated by DNA directed self-assembly. Through the modification of carbon nanotube (CNT) termini with synthetic DNA oligonucleotides, gold nanoparticles are delivered, via DNA hybridization, to CNT tips that then serve as growth sites for zinc oxide (ZnO) nanowires. The structures we have generated using DNA templating represent an advance toward building higher order sequenced one dimensional nanostructures with rational control.  相似文献   

19.
实现纳米尺寸物体的合理设计与组装是纳米技术与精密工程的主要目标之一.DNA因其双链相互作用和螺旋几何构型的可预测性而使其成为构建纳米尺度结构的优秀建筑基元.DNA纳米结构在溶液状况改变时易分解.为提高DNA纳米结构的稳定性,一个链霉亲和素-生物素复合单元被引入到该纳米结构中.凝胶测试与熔点测试均证实链霉亲和素-生物素复合有助于提高DNA纳米结构的稳定性.该方法可广泛用于解决结构DNA纳米技术中的类似问题.  相似文献   

20.
DNA nanostructures, especially DNA origami, receive close interest because of the programmable control over their shape and size, precise spatial addressability, easy and high‐yield preparation, mechanical flexibility, and biocompatibility. They have been used to organize a variety of nanoscale elements for specific functions, resulting in unprecedented improvements in the field of nanophotonics and nanomedical research. In this review, the discussion focuses on the employment of DNA nanostructures for the precise organization of noble metal nanoparticles to build interesting plasmonic nanoarchitectures, for the fabrication of visualized sensors and for targeted drug delivery. The effects offered by DNA nanostructures are highlighted in the areas of nanoantennas, collective plasmonic behaviors, single‐molecule analysis, and cancer‐cell targeting or killing. Finally, the challenges in the field of DNA nanotechnology for realistic application are discussed and insights for future directions are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号