首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The analysis of hydrophobic and hydrophilic peptides in an aqueous medium using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is reported. The key development allowing for simultaneous analysis of both hydrophobic and hydrophilic components of the sample mixture is the use of surfactants to solubilize the hydrophobic components in the MALDI matrix solution. A wide variety of anionic, cationic, zwitterionic, and nonionic surfactants were evaluated for their ability to assist in the generation of an abundant pseudomolecular ion from a model hydrophobic peptide ([tert-butoxycarbonyl]Glu[gamma-O-benzyl]-Ala-Leu-Ala[O-phenacyl ester]). The results indicate that the most successful surfactant among those studied for analyzing the model hydrophobic peptide is sodium dodecyl sulfate (SDS). SDS exhibited no interfering surfactant background ions, little to no loss of the acid-labile protecting groups from the model hydrophobic peptide, and an abundant pseudomolecular ion of the analyte. In addition, the use of surfactants is shown to be compatible with hydrophilic peptides as well. Mixtures of hydrophobic and hydrophilic peptides were characterized using surfactant-aided (SA) MALDI-MS, and it is demonstrated that all components are detectable once the surfactant is included in the sample solution. We conclude that the key benefit of using SA-MALDI-MS is its ability to simultaneously analyze hydrophobic and hydrophilic peptides from a single sample mixture, including synthetic peptides containing acid- and base-labile protecting groups.  相似文献   

2.
Objective: This study aims to clarify the role of surfactant and drug molecular structures on drug solubility in micellar surfactant solutions.

Significance: (1) Rationale for surfactant selection is provided; (2) the large data set can be used for validation of the drug solubility parameters used in oral absorption models.

Methods: Equilibrium solubility of two hydrophobic drugs and one model hydrophobic steroid in micellar solutions of 19 surfactants was measured by HPLC. The drug solubilization locus in the micelles was assessed by UV spectrometry.

Results: Danazol is solubilized much more efficiently than fenofibrate by ionic surfactants due to ion–dipole interactions between the charged surfactant head groups and the polar steroid backbone. Drug solubilization increases linearly with the increase of hydrophobic chain length for all studied surfactant types. Addition of 1–3 ethylene oxide (EO) units in the head group of dodecyl sulfate surfactants reduces significantly the solubilization of both studied drugs and decreases linearly the solubilization locus polarity of fenofibrate. The locus of fenofibrate solubilization is in the hydrophobic core of nonionic surfactant micelles and in the palisade layer of ionic surfactant micelles.

Conclusions: Highest drug solubility can be obtained by using surfactants molecules with long chain length coupled with hydrophilic head group that provides additional drug–surfactant interactions (i.e. ion–dipole) in the micelles.  相似文献   


3.
Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.  相似文献   

4.
Surfactant self‐assembly on surfaces is an effective way to tailor the complex forces at and between hydrophobic‐water interfaces. Here, the range of structures and forces that are possible at surfactant‐adsorbed hydrophobic surfaces are demonstrated: certain long‐chain bolaform surfactants—containing a polydimethylsiloxane (PDMS) mid‐block domain and two cationic α, ω‐quarternary ammonium end‐groups—readily adsorb onto thin PDMS films and form dynamically fluctuating nanostructures. Through measurements with the surface forces apparatus (SFA), it is found that these soft protruding nanostructures display polymer‐like exploration behavior at the PDMS surface and give rise to a long‐ranged, temperature‐ and rate‐dependent attractive bridging force (not due to viscous forces) on approach to a hydrophilic bare mica surface. Coulombic interactions between the cationic surfactant end‐groups and negatively‐charged mica result in a rate‐dependent polymer bridging force during separation as the hydrophobic surfactant mid‐blocks are pulled out from the PDMS interface, yielding strong adhesion energies. Thus, (i) the versatile array of surfactant structures that may form at hydrophobic surfaces is highlighted, (ii) the need to consider the interaction dynamics of such self‐assembled polymer layers is emphasized, and (iii) it is shown that long‐chain surfactants can promote robust adhesion in aqueous solutions.  相似文献   

5.
In this work, we investigated optical properties and the morphology of the amphiphilic azobenzene dye 1 containing hydroxyl azobenzene and C10 alkyl chains. Since the hydroxyl group on 1 has a pKa of 9.38, the deprotonation of the hydroxyl group occurs at pH > pKa (9.38) and thus the 1 nanoparticles are negatively charged. The deprotonated hydroxyl group is hydrophilic relative to the long alkyl chain that is hydrophobic, while the hydrophobic and hydrophilic parts are connected by covalent bonds. When such an azobenzene molecule 1 with both hydrophobic and hydrophilic groups exists in solution, "self-aggregation" may occur due to the hydrophobic interaction between the long alkyl chains. The scattered morphology at pH 7.0 (neutral state) and the aggregated morphology at pH 10.5 (anionic state) of 1 were demostrated by transmission electron microscopy (TEM) and atomic force microscopy (AFM) images. Formation of supramolecular aggregation-induced vesicular-like structures are highly interesting due to the ability to respond to external triggers, pH. The pH value can be reversed by adding acid or base to the system, that is, switching the aggregation "on" and "off" can be repeated.  相似文献   

6.
The stability of poly(arylene ether sulfone ketone) (SPESK) multiblock copolymer membranes having highly sulfonated hydrophilic blocks was tested in an operating fuel cell. The electrochemical properties and drain water were monitored during the test, followed by post-test analyses of the membrane. During a 2000-h fuel cell operation test at 80 °C and 53% RH (relative humidity) and with a constant current density (0.2 A cm(-2)), the cell voltage showed minor losses, with slight increases in the resistance. In the drain water, anions such as formate, acetate, and sulfate were observed. Post-test analyses of the chemical structure by NMR and IR spectra revealed that the sulfonated fluorenyl group with ether linkage was the most likely to have degraded during the long-term operation, producing these small molecules. The minor oxidative degradation only slightly affected the proton conductivity, water uptake, and phase-separated morphology.  相似文献   

7.
Lubricin and hyaluronic acid (HA), molecular constituents of synovial fluid, have long been theorized to play a role in joint lubrication and wear protection. While lubricin has been shown to function as a boundary lubricant, conflicting evidence exists as to the boundary lubricating ability of hyaluronic acid. Here, we use colloidal force microscopy to explore the friction behavior of these two molecules on the microscale between chemically uniform hydrophilic (hydroxyl-terminated) and hydrophobic (methyl-terminated) surfaces in physiological buffer solution. Behaviors on both surfaces are physiologically relevant since the heterogeneous articular cartilage surface contains both hydrophilic and hydrophobic elements. Friction between hydrophobic surfaces was initially high (μ=1.1, at 100nN of applied normal load) and was significantly reduced by lubricin addition while friction between hydrophilic surfaces was initially low (μ=0.1) and was slightly increased by lubricin addition. At lubricin concentrations above 200 μg/ml, friction behavior on the two surfaces was similar (μ=0.2) indicating that nearly all interaction between the two surfaces was between adsorbed lubricin molecules rather than between the surfaces themselves. In contrast, addition of HA did not appreciably alter the frictional behavior between the model surfaces. No synergistic effect on friction behavior was seen in a physiological mixture of lubricin and HA. Lubricin can equally mediate the frictional response between both hydrophilic and hydrophobic surfaces, likely fully preventing direct surface-to-surface contact at sufficient concentrations, whereas HA provides considerably less boundary lubrication.  相似文献   

8.
Silicon nanocrystals, also called quantum dots, have unique optical properties when in the quantum‐confinement regime. These optical properties make silicon nanocrystals promising materials for a wide variety of applications ranging from optoelectronic devices to fluorophores in biological imaging. A liquid‐phase synthetic approach is reported using surfactant molecules to control particle growth, producing highly monodisperse silicon particles. The surface of the nanocrystals are capped by functional organic molecules that passivate and protect the silicon particles from oxidation, enabling the particles to be used in hydrophobic and hydrophilic applications. The use of hydrophilic silicon quantum dots as optical probes is illustrated by the imaging of Vero cells.  相似文献   

9.
综述了非季铵盐型松香基表面活性剂的研究进展,系统归纳了其合成概况和基础物理性质。合成进展中以对松香改性增强亲水性能的亲水基团成键机理为主线,对表面活性剂进行分类总结,包括仅含氧(O)原子基团的醚、酯、羧酸类表面活性剂,含氧(O)和氮(N)原子基团的氨基酸类表面活性剂,含氧(O)和硫(S)原子基团的硫酸、磺酸类表面活性剂以及含氧(O)、氮(N)和硫(S)原子基团的胺基盐类表面活性剂。通过归纳非季铵盐型松香基表面活性剂的物理性质数据,剖析其与普通柔性长链表面活性剂物理性质区别,并对其研究和应用现状进行了展望,指出该类表面活性剂在胶束化行为研究和功能材料合成中具有重要发展潜力。  相似文献   

10.
《Materials Letters》2005,59(29-30):3856-3860
Gold nanostructures have been synthesized by a microwave(MW)–polyol method with the assistance of such cationic surfactants as alkyltrimethyl ammonium bromide (CnTAB: n = 10–16, even numbers) or cetylpryridinium chloride (C16PC). Although major products were spherical aggregates for CnTAB (n = 10, 12, 14), triangular, pentagonal, and hexagonal nanoplates were preferentially synthesized using C16TAB. Spherical spike-ball structures were prepared through C16PC. These results indicated that the morphology of gold nanostructures prepared by the MW–polyol method depends both on the chain length of hydrophobic alkyl group and on the hydrophilic head group.  相似文献   

11.
An electroless gold deposition method was used to deposit Au nanotubules within the pores of a polycarbonate template membrane. Membranes containing Au nanotubules with inside diameters of 2 and 3 nm were prepared for these studies. Thiols were chemisorbed to the inside tubule walls in order to change the chemical environment within the tubules. The effect of the chemical environment within the tubules on the transport properties of the tubule-containing membrane was investigated. Membranes modified with HS-C(16)H(33) preferentially transported hydrophobic permeant molecules. When a homologous series of permeant molecules was used, the most hydrophobic permeant was preferentially partitioned into and transported by the HS-C(16)H(33) derivatized membrane. In addition, the effect of alkyl chain length (R), in a homologous series of thiols R-SH, was investigated. Hydrophobic permeant molecules were preferentially partitioned into and transported by membranes containing the largest alkyl group. In contrast, membranes modified with HS-C(2)H(4)OH preferentially transported the more hydrophilic permeant pyridine. Finally, we show here that the HS-C(16)H(33) derivatized membrane can be used to separate hydrophobic species from hydrophilic species.  相似文献   

12.
Langmuir–Blodgett (LB) multilayers have been formed from a wide variety of compounds but the basic studies from which others have developed have involved a long hydrocarbon chain terminated at one end by a hydrophilic group. The quaternary ammonium ion has a greater attraction for water than do the other groups which have been used and is so hydrophilic as to preclude the formation of LB layers of straight chain molecules terminated by this group. Certainly all such molecules up to and including octadecyl trimethyl ammonium bromide form micelles in preference to monolayers at the air/water interface though metastable monolayers of this compound have been reported. Quaternized imidazoles have, like quaternary ammonium ions, a positive charge but seem more likely to form LB films. We have thus explored the properties of several of these compounds with a view to producing one which has the desired properties. In order to combat the highly hydrophilic nature of the imidazole group it is necessary to employ a highly hydrophobic ‘tail group’. Thus our most successful compound contains two octadecyl alkyl chains. We have studied the behaviour of this compound at the air/water interface and have found that the nature of the subphase has a very marked influence on the shape of the isotherms. With nitric acid added to the subphase to bring about a pH of 3.5 it is possible to obtain good Y deposition with deposition ratios equal to one in both the upward and downward directions. However we have not been able to achieve LB deposition using any other acid. On heating, the compound in question it changes from a crystalline structure to a smectic structure at 55°C.  相似文献   

13.
14.
以氯丁酰氯(CBC)为小分子试剂,通过傅-克酰基化反应在双酚A型聚砜主链引入可交换氯,制备了氯乙酰基化聚砜(CBPS),然后以羟乙基磺酸钠(HES)为试剂,与氯甲基通过亲核取代反应制备了一种具备较长柔性侧链的一种侧链脂肪磺酸型磺化聚砜(PS-ES),采用红外光谱和核磁氢谱标表征了它们的化学结构,并采用溶液浇注的方法制备了相应的聚砜阳离子交换膜(PSCEM),探索了PSCEM性能和温度之间的关系。结果表明:随着温度的升高,侧链末端的磺酸基团运动能力增强,导致PSCEM的吸水率(WU)、吸水溶胀性(SW)和质子传导率(PC)增加,由于制备的PS-ES膜材具备很长的柔性侧链,使相应PSCEM的亲水基团远离疏水聚合物主链,吸收的水分子被限制在亲水区域,降低了亲水部分对疏水主链的影响,使PS-ES膜在高磺化度下仍具备一定的尺寸稳定性,其中磺酸键合量为1.50mmol/g的PS-ES-3膜在25℃和85℃的吸水率分别是27.6%和43.6%,但是相应的吸水溶胀性仅为25.5%和55.7%,其中PS-ES-3在85℃的质子传导率达到了0.149S/cm,与商业化Nafion115的性能非常接近,表现出很好的综合性能。  相似文献   

15.
Injectable polymer microsphere‐based stem cell delivery systems have a severe problem that they do not offer a desirable environment for stem cell adhesion, proliferation, and differentiation because it is difficult to entrap a large number of hydrophilic functional protein molecules into the core of hydrophobic polymer microspheres. In this work, soybean lecithin (SL) is applied to entrap hydrophilic bone morphogenic protein‐2 (BMP‐2) into nanoporous poly(lactide‐co‐glycolide) (PLGA)‐based microspheres by a two‐step method: SL/BMP‐2 complexes preparation and PLGA/SL/BMP‐2 microsphere preparation. The measurements of their physicochemical properties show that PLGA/SL/BMP‐2 microspheres had significantly higher BMP‐2 entrapment efficiency and controlled triphasic BMP‐2 release behavior compared with PLGA/BMP‐2 microspheres. Furthermore, the in vitro and in vivo stem cell behaviors on PLGA/SL/BMP‐2 microspheres are analyzed. Compared with PLGA/BMP‐2 microspheres, PLGA/SL/BMP‐2 microspheres have significantly higher in vitro and in vivo stem cell attachment, proliferation, differentiation, and matrix mineralization abilities. Therefore, injectable nanoporous PLGA/SL/BMP‐2 microspheres can be potentially used as a stem cell platform for bone tissue regeneration. In addition, SL can be potentially used to prepare hydrophilic protein‐loaded hydrophobic polymer microspheres with highly entrapped and controlled release of proteins.  相似文献   

16.
The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g.?lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular.  相似文献   

17.
Lipidic lyotropic liquid crystals are at the frontline of current research for release of target therapeutic molecules due to their unique structural complexity and the possibility of engineering stimuli‐triggered release of both hydrophilic and hydrophobic molecules. One of the most suitable lipidic mesophases for the encapsulation and delivery of drugs is the reversed double diamond bicontinuous cubic phase, in which two distinct and parallel networks of ~4 nm water channels percolate independently through the lipid bilayers, following a Pn3m space group symmetry. In the unperturbed Pn3m structure, the two sets of channels act as autonomous and non‐communicating 3D transport pathways. Here, a novel type of bicontinuous cubic phase is introduced, where the presence of OmpF membrane proteins at the bilayers provides unique topological interconnectivities among the two distinct sets of water channels, enabling molecular active gating among them. By a combination of small‐angle X‐ray scattering, release and ion conductivity experiments, it is shown that, without altering the Pn3m space group symmetry or the water channel diameter, the newly designed perforated bicontinuous cubic phase attains transport properties well beyond those of the standard mesophase, allowing faster, sustained release of bioactive target molecules. By further exploiting the pH‐mediated pore‐closing response mechanism of the double amino acid half‐ring architecture in the membrane protein, the pores of the perforated mesophase can be opened and closed with a pH trigger, enabling a fine modulation of the transport properties by only moderate changes in pH, which could open unexplored opportunities in the targeted delivery of bioactive compounds.  相似文献   

18.
The objective of this study is to design new hybrid silica materials as templates with hydrophobic properties, prepared at room temperature by a base catalyzed sol–gel process. As silica sources, organoalkoxysilanes functionalized with short hydrophobic chains were used: tetraethylorthosilicate (TEOS), methyltriethoxysilane (MTES), vinyltriethoxysilane (VTES), octyltriethoxysilane (OTES) and isobutyltriethoxysilane (iTES). It was shown that hydrophobicity of the functionalized silica nanoparticles increased as a function of length of the aliphatic chains (MTES < iTES < OTES) or when, instead of a hydrophobic alkyl chains (substituting group of silica precursors), a monounsaturated group was used (VTES). It was observed that the samples responded in a specific way to each type (hydrophilic or hydrophobic) of the dropped liquid. Even though the experiments were limited to short hydrocarbon chains, they showed that there is a threshold to reach high hydrophobicity of the hybrid surface.  相似文献   

19.
ABSTRACT

The variation of the hydrophobic flocculation behavior of talc mineral with pH, kerosene concentration, stirring speed, flocculation, and settling times was investigated. The experimental studies showed that the flocculation of talc suspension increased to a particular point with increasing kerosene concentration and thereafter decreased slightly. Also, the flocculation with kerosene was not much affected by the pH changes of the suspension. On the other hand, sodium oleate, sodium dodecyl sulfate (SDS), and Aero 801 used as anionic surfactant in conjunction with kerosene provided significant increases in the flocculation of talc, and depends on increasing surface hydrophobicity of the particles. Especially, in the presence of sodium oleate along with kerosene, the talc suspension could be flocculated with a recovery of 95%. Consequently, the enhancement with nonpolar oil was more significant for the hydrophobic flocculation of talc suspension promoted by long hydrocarbon chain surfactant (sodium oleate) than short hydrocarbon chain surfactants (SDS and Aero 801).  相似文献   

20.
In this study, amphiphilic brush-like copolymers conjugated with short alkyl or long polymeric chains of various lengths are synthesized using ring-opening metathesis polymerization (ROMP) of substituted norbornadiene monomers followed by chemical transformations. These amphiphilic copolymers form spherical self-assemblies in aqueous media with diameters of 132-244 nm. The low critical aggregation concentration of these assemblies (2.5 × 10(-3) -1.4 × 10(-5) g/L) indicates that they are quite stable in dilute conditions. An appropriate length of polymer side chain that conjugates the polymer backbone with a hydrophobic ICG (indocyanine green) moiety enhanced the fluorescence intensities of these self-assemblies in aqueous solution as well as in tumor-bearing mice. A longer side chain conjugated with tumor targeting agents could significantly affect the tumor specificity of self-assemblies to a greater extent. The self-assemblies bearing hydrophilic tumor targeting agents, such as a glucosamine molecule and a cyclic RGD (arginine-glycine-asparatic acid) peptide, accumulated in tumor tissues with high selectivity, while those having a hydrophobic targeting agent, such as folate moieties, accumulated in tumor sites with low selectivity. The results demonstrated here unambiguously indicate that the fluorescence intensity and tumor specificity of self-assemblies are strongly affected by the length of side chains that conjugate with dyes and targeting agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号