首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Herein, the facile preparation of ultrathin (≈3.8 nm in thickness) 2D cobalt phosphate (CoPi) nanoflakes through an oil‐phase method is reported. The obtained nanoflakes are composed of highly ordered mesoporous (≈3.74 nm in diameter) structure and exhibit an amorphous nature. Attractively, when doped with nickel, such 2D mesoporous Ni‐doped CoPi nanoflakes display decent electrocatalytic performances in terms of intrinsic activity, and low kinetic barrier toward the oxygen evolution reaction (OER). Particularly, the optimized 10 at% Ni‐doped CoPi nanoflakes (denoted as Ni10‐CoPi) deliver a low overpotential at 10 mA cm?2 (320 mV), small Tafel slope (44.5 mV dec?1), and high stability for OER in 1.0 m KOH solution, which is comparable to the state‐of‐the‐art RuO2 tested in the same condition (overpotential: 327 mV at 10 mA cm?2, Tafel slope: 73.7 mV dec?1). The robust framework coupled with good OER performance enables the 2D mesoporous Ni10‐CoPi nanoflakes to be a promising material for energy conversion applications.  相似文献   

2.
Transition‐metal phosphides have flourished as promising candidates for oxygen evolution reaction (OER) electrocatalysts. Herein, it is demonstrated that the electrocatalytic OER performance of CoP can be greatly improved by constructing a hybrid CoP/TiOx heterostructure. The CoP/TiOx heterostructure is fabricated using metal–organic framework nanocrystals as templates, which leads to unique hollow structures and uniformly distributed CoP nanoparticles on TiOx. The strong interactions between CoP and TiOx in the CoP/TiOx heterostructure and the conductive nature of TiOx with Ti3+ sites endow the CoP–TiOx hybrid material with high OER activity comparable to the state‐of‐the‐art IrO2 or RuO2 OER electrocatalysts. In combination with theoretical calculations, this work reveals that the formation of CoP/TiOx heterostructure can generate a pathway for facile electron transport and optimize the water adsorption energy, thus promoting the OER electrocatalysis.  相似文献   

3.
Heteroatoms Fe, F co-doped NiO hollow spheres (Fe, F-NiO) are designed, which simultaneously integrate promoted thermodynamics by electronic structure modulation with boosted reaction kinetics by nano-architectonics. Benefiting from the electronic structure co-regulation of Ni sites by introducing Fe and F atoms in NiO , as the rate-determined step (RDS), the Gibbs free energy of OH* intermediates (ΔGOH*) for Fe, F-NiO catalyst is significantly decreased to 1.87 eV for oxygen evolution reaction (OER) compared with pristine NiO (2.23 eV), which reduces the energy barrier and improves the reaction activity. Besides, densities of states (DOS) result verifies the bandgap of Fe, F-NiO(100) is significantly decreased compared with pristine NiO(100), which is beneficial to promote electrons transfer efficiency in electrochemical system. Profiting by the synergistic effect, the Fe, F-NiO hollow spheres only require the overpotential of 215 mV for OER at 10 mA cm−2 and extraordinary durability under alkaline condition. The assembled Fe, F-NiO || Fe-Ni2P system only needs 1.51 V to reach 10 mA cm−2, also exhibits outstanding electrocatalytic durability for continuous operation. More importantly, replacing the sluggish OER by advanced sulfion oxidation reaction (SOR) not only can realize the energy saving H2 production and toxic substances degradation, but also bring additional economic benefits.  相似文献   

4.
Abundant availability of seawater grants economic and resource-rich benefits to water electrolysis technology requiring high-purity water if undesired reactions such as chlorine evolution reaction (CER) competitive to oxygen evolution reaction (OER) are suppressed. Inspired by a conceptual computational work suggesting that OER is kinetically improved via a double activation within 7 Å-gap nanochannels, RuO2 catalysts are realized to have nanoscopic channels at 7, 11, and 14 Å gap in average (dgap), and preferential activity improvement of OER over CER in seawater by using nanochanneled RuO2 is demonstrated. When the channels are developed to have 7 Å gap, the OER current is maximized with the overpotential required for triggering OER minimized. The gap value guaranteeing the highest OER activity is identical to the value expected from the computational work. The improved OER activity significantly increases the selectivity of OER over CER in seawater since the double activation by the 7 Å-nanoconfined environments to allow an OER intermediate (*OOH) to be doubly anchored to Ru and O active sites does not work on the CER intermediate (*Cl). Successful operation of direct seawater electrolysis with improved hydrogen production is demonstrated by employing the 7 Å-nanochanneled RuO2 as the OER electrocatalyst.  相似文献   

5.
Surface/interface design is one of the most significant and promising motivations to develop high‐performance catalysts for electrolytic water splitting. Here, the nature of cytomembrane having the most effective and functional surface structure is mimicked to fabricate a new configuration of Ni–N–O porous interface nanoparticles (NiNO INPs) with strongly interacting nanointerface between the Ni3N and NiO domains, for enhancing the electrocatalytic oxygen evolution reaction (OER) performance. The combination of transmission electron microscopy and electrochemical investigations, tracking the correlation between microstructure evolution and catalytic activity, demonstrate the strongly coupled nanointerface for an approximately sixfold improvement of electrolytic efficiency. Density functional theory simulates the electrocatalytic process with a maximum of 85% reduction of the energy barrier. Further investigations find that the real active site for the OER in the NiNO INPs is the strongly coupled Ni–N–O nanointerface, not the derived amorphous hydroxide, during the OER process. The determination of the correlation of constructed nanointerface with catalytic properties suggests a significant strategy toward the rational design of catalysts for efficient water electrocatalysis.  相似文献   

6.
Establishing a correlation between the crystal structure and electrocatalytic activity is crucial to the rational design of high performance electrocatalysts. In this work, taking the widely investigated nickel (Ni) based nonprecious oxygen evolution reaction (OER) catalyst as an example, for the first time, it is reported that the crystal structure plays a critical role in determining the OER performance. Similar‐sized nickel nanoparticles but in different hexagonal close‐packed phase and face‐centered cubic phase coated with N‐doped carbon shells, noted as hcp‐Ni@NC and fcc‐Ni@NC, are successfully prepared, respectively, in which the N‐coated carbon shell structures were also similar. Surprisingly, a dramatically enhanced OER performance of hcp‐Ni@NC in comparison with fcc‐Ni@NC is observed. The hcp‐Ni@NC only requires 305 mV overpotential to achieve the current density of 10 mA cm?2, which is 55 mV lower than that of fcc‐Ni@NC, which can be ascribed to the influence of nickel crystal phase on the electron structure of N‐doped carbon shell. This finding will bring new thinking toward the rational design of high performance non‐noble metal electrocatalysts.  相似文献   

7.
8.
9.
The oxygen evolution reaction (OER) has significant effects on the water-splitting process and rechargeable metal-air batteries; however, the sluggish reaction kinetics caused by the four-electron transfer process for transition metal catalysts hinder large-scale commercialization in highly efficient electrochemical energy conversion devices. Herein, a magnetic heating-assisted enhancement design for low-cost carbonized wood with high OER activity is proposed, in which Ni nanoparticles are encapsulated in amorphous NiFe hydroxide nanosheets (a-NiFe@Ni-CW) via direct calcination and electroplating. The introduction of amorphous NiFe hydroxide nanosheets optimizes the electronic structure of a-NiFe@Ni-CW, accelerating electron transfer and reducing the energy barrier in the OER. More importantly, the Ni nanoparticles located on carbonized wood can function as magnetic heating centers under the effect of an alternating current (AC) magnetic field, further promoting the adsorption of reaction intermediates. Consequently, a-NiFe@Ni-CW demonstrated an overpotential of 268 mV at 100 mA cm−2 for the OER under an AC magnetic field, which is superior to that of most reported transition metal catalysts. Starting with sustainable and abundant wood, this work provides a reference for highly effective and low-cost electrocatalyst design with the assistance of a magnetic field.  相似文献   

10.
Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low‐cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron‐cobalt oxide nanosheets (Fex Coy ‐ONSs) with a large specific surface area (up to 261.1 m2 g?1), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1Co1‐ONS measured at an overpotential of 350 mV reaches up to 54.9 A g?1, while its Tafel slope is 36.8 mV dec?1; both of which are superior to those of commercial RuO2, crystalline Fe1Co1‐ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1Co1‐ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH? ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2O onto nearby Co3+ sites.  相似文献   

11.
Herein, a surfactant‐ and additive‐free strategy is developed for morphology‐controllable synthesis of cobalt pyrophosphate (CoPPi) nanostructures by tuning the concentration and ratio of the precursor solutions of Na4P2O7 and Co(CH3COO)2. A series of CoPPi nanostructures including nanowires, nanobelts, nanoleaves, and nanorhombuses are prepared and exhibit very promising electrocatalytic properties toward the oxygen evolution reaction (OER). Acting as both reactant and pseudo‐surfactant, the existence of excess Na4P2O7 is essential to synthesize CoPPi nanostructures for unique morphologies. Among all CoPPi nanostructures, the CoPPi nanowires catalyst renders the best catalytic performance for OER in alkaline media, achieving a low Tafel slope of 54.1 mV dec−1, a small overpotential of 359 mV at 10 mA cm−2, and superior stability. The electrocatalytic activities of CoPPi nanowires outperform the most reported non‐noble metal based catalysts, even better than the benchmark Ir/C (20%) catalyst. The reported synthesis of CoPPi gives guidance for morphology control of transition metal pyrophosphate based nanostructures for a high‐performance inexpensive material to replace the noble metal‐based OER catalysts.  相似文献   

12.
Conjugated coordination polymers (CCPs) have attracted extensive attention for various applications related to energy storage and conversion in the past few years, despite that there are many CCPs with unclear chemical states and structures. Here, linear CCPs (LCCPs), with metal–O4 active sites grown on carbon paper (CP) for oxygen evolution reaction (OER), are presented. The LCCPs with high crystallinity and simple structures exhibit the order of electrocatalytic activity of Co–O4 > Ni–O4 > Fe–O4 in terms of the metal–O4 centers. The Co-based LCCP shows higher OER performance (263 mV at 10 mA cm−2) and better durability (90 h at 30 mA cm−2) than commercial IrO2/CP. The structures and chemical states of LCCPs are carefully investigated, and density functional theory is used to reveal the mechanism of OER at the central metal site. This investigation into LCCPs provides new sights for a better understanding of CCPs and expands the applications of LCCPs with metal–O4 sites.  相似文献   

13.
Oxygen evolution reaction (OER) plays key roles in electrochemical energy conversion devices. Recent advances have demonstrated that OER catalysts through lattice oxygen-mediated mechanism (LOM) can bypass the scaling relation-induced limitations on those catalysts through adsorbate evolution mechanism (AEM). Among various catalysts, IrOx, the most promising OER catalyst, suffers from low activities for its AEM pathway. Here, it is demonstrated that a pre-electrochemical acidic etching treatments on the hybrids of IrOx and Y2O3 (IrOx/Y2O3) switch the AEM-dominated OER pathway to LOM-dominated one in alkali electrolyte, delivering a high performance with a low overpotential of 223 mV at 10 mA cm−2 and a long-term stability. Mechanism investigations suggest that the pre-electrochemical etching treatments create more oxygen vacancies in catalysts due to the dissolution of yttrium and then provide highly active surface lattice oxygen for participating OER, thereby enabling the LOM-dominated pathway and resulting in a significantly increased OER activity in basic electrolyte.  相似文献   

14.
Intrinsically inferior electrocatalytic activity of NiFe layered double hydroxides (LDHs) nanosheets is considered as a limiting factor to inhibit the electrocatalytic properties for oxygen evolution reaction (OER). Proper defect engineering to tune the surface electronic configuration of electrocatalysts may significantly improve the intrinsic activity. In this work, the selective formation of cation vacancies in NiFe LDHs nanosheets is successfully realized. The as‐synthesized NiFe LDHs‐VFe and NiFe LDHs‐VNi electrocatalysts show excellent activity for OER, mainly attributed to the introduction of rich iron or nickel vacancies in NiFe LDHs nanosheets, which efficiently tune the surface electronic structure increasing the adsorbing capacity of OER intermediates. Density functional theory (DFT) computational results also further indicate that the OER catalytic performance of NiFe LDHs can be pronouncedly improved by introducing Fe or Ni vacancies.  相似文献   

15.
Doping engineering has been an important approach to boost oxygen evolution reaction (OER) activity, while investigation on the dopant‐induced modification of active sites and reaction kinetics remains incomplete. Herein, taking the cubic CoSe2 as an example, a universal strategy to synergistically achieve active sites and dynamic regulation is developed by incorporating low‐valence Zn. It is revealed that regulation by Zn can facilitate reconstruction of the surface to form active Co oxyhydroxides under OER conditions. By combining theoretical calculations and characterization by various techniques, it is shown that the incorporation of Zn into CoSe2 can cause subtle lattice distortion and strong electronic interactions, thereby contributing to increased active site exposure and improved OER kinetics. Density functional theory simulations demonstrate that Zn incorporation synergistically optimizes the kinetic energy barrier by promoting co‐adsorption of OER intermediates on a Co site and its adjacent Zn site. As a result, the modified CoSe2 NAs electrode shows optimized catalytic activity and excellent stability with the low overpotential of only 286 mV required to drive a current density of 10 mA cm?2 in an alkaline electrolyte.  相似文献   

16.
Electrochemical water splitting is of prime importance to green energy technology. Particularly, the reaction at the anode side, namely the oxygen evolution reaction (OER), requires a high overpotential associated with O O bond formation, which dominates the energy-efficiency of the whole process. Activating the anionic redox chemistry of oxygen in metal oxides, which involves the formation of superoxo/peroxo-like (O2)n, commonly occurs in most highly active catalysts during the OER process. In this study, a highly active catalyst is designed: electrochemically delithiated LiNiO2, which facilitates the formation of superoxo/peroxo-like (O2)n species, i.e., NiOO*, for enhancing OER activity. The OER-induced surface reconstruction builds an adaptive heterojunction, where NiOOH grows on delithiated LiNiO2 (delithiated-LiNiO2/NiOOH). At this junction, the lithium vacancies within the delithiated LiNiO2 optimize the electronic structure of the surface NiOOH to form stable NiOO* species, which enables better OER activity. This finding provides new insight for designing highly active catalysts with stable superoxo-like/peroxo-like (O2)n for water oxidation.  相似文献   

17.
Hydrogen is regarded as the most promising green clean energy in the 21st century. Developing the highly efficient and low‐cost electrocatalysts for oxygen evolution reaction (OER) is of great concern for the hydrogen industry. In the water electrolyzed reaction, the overpotential and the kinetics are the main hurdles for OER. Therefore, an efficient and durable oxygen evolution reaction electrocatalyst is required. In this study, an activated graphene (AG)–black phosphorus (BP) nanosheets hybrid is fabricated for supporting Ni3N particles (Ni3N/BP‐AG) in the application of OER. The Ni3N particles are combined with the BP‐AG heterostructure via facile mechanical ball milling under argon protection. The synthesized Ni3N/BP‐AG shows excellent catalytic performance toward the OER, demanding the overpotential of 233 mV for a current density of 10 mA cm?2 with a Tafel slope of 42 mV dec?1. The Ni3N/BP‐AG catalysts also show remarkable stability with a retention rate of the current density of about 86.4% after measuring for 10 000 s in potentiostatic mode.  相似文献   

18.
Cobalt pnictides show good catalytic activity and stability on oxygen evolution reaction (OER) behaviors in a strong alkaline solution. Identifying the intrinsic composition/structure‐property relationship of the oxide layer on the cobalt pnictides is critical to design better and cheaper electrocatalysts for the commercial viability of OER technologies. In this work, the restructured oxide layer on the cobalt pnictides and its effect on the activity and mechanism for OER is systematically analyzed. In‐situ electrochemical impedance spectroscopy (EIS) and near edge x‐ray absorption fine structure (NEXAFS) spectra indicate that a higher OER performance of cobalt pnictides than Co3O4 is attributed to the more structural disorder and oxygen defect sites in the cobalt oxide layer evolved from cobalt pnictides. Using angle resolved x‐ray photoelectron spectroscopy (AR‐XPS) further demonstrates that the oxygen defect sites mainly concentrate on the subsurface of cobalt oxide layer. The current study demonstrated promising opportunities for further enhancing the OER performance of cobalt‐based electrocatalysts by controlling the subsurface defects of the restructured active layer.  相似文献   

19.
Branched nanoparticles are one of the most promising nanoparticle catalysts as their branch sizes and surfaces can be tuned to enable both high activity and stability. Understanding how the crystallinity and surface facets of branched nanoparticles affect their catalytic performance is vital for further catalyst development. In this work, a synthesis is developed to form highly branched ruthenium (Ru) nanoparticles with control of crystallinity. It is shown that faceted Ru branched nanoparticles have improved stability and activity in the oxygen evolution reaction (OER) compared with polycrystalline Ru nanoparticles. This work achieves a low 180 mV overpotential at 10 mA cm?2 for hours, demonstrating that record‐high stability for Ru nanocrystals can be achieved while retaining high activity for OER. The superior electrocatalytic performance of faceted Ru branched nanoparticles is ascribed to the lower Ru dissolution rate under OER conditions due to low‐index facets on the branch surfaces.  相似文献   

20.
Monodentate adsorption of oxygen intermediates results in a theoretical overpotential limit of ≈0.35 V for oxygen evolution reaction (OER), which causes the sluggish kinetics of the OER process. In this work, nonprecious chromium dopant is introduced into the self‐supported CoFe layered double hydroxides (LDHs) on nickel foam (Cr‐CoFe LDHs/NF) via a facile one‐step hydrothermal method, which exhibits a preeminent electrocatalytic activity toward the OER with an ultralow overpotential of 238 mV to obtain 10 mA cm?2 and a high stability after cyclic voltammetry for 5000 cycles in alkaline solution (1 m KOH). Density functional theory (DFT) calculations unveil that Cr dopants as new active sites could improve the electron‐donation ability of the resultant Cr‐CoFe LDHs due to the smaller electronegativity of Cr in comparison with Fe and Co. Therefore, the scaling relation of adsorption energy among four oxygen intermediates is broken and consequently the OER performance is further promoted. This work provides a strategy to develop efficient metal layered double hydroxide OER catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号