首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA‐200 (miR‐200) has been reported to inhibit metastasis in cancer cells. Herein, pH‐sensitive and peptide‐modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR‐200, respectively. These peptides include one cell‐penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria‐targeting peptide. The peptide‐modified nanoparticles are further coated with a pH‐sensitive PEG‐lipid derivative with an imine bond. These specially‐designed nanoparticles exhibit pH‐responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR‐200 by SLN further increases the cytotoxicity of irinotecan‐loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/β‐catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC‐bearing mice, the in vivo results further indicate that irinotecan and miR‐200 in pH‐responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate β‐catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH‐responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.  相似文献   

2.
Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting—two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.  相似文献   

3.
Molecular therapy using a small interfering RNA (siRNA) has shown promise in the development of novel therapeutics. Various formulations have been used for in vivo delivery of siRNAs. However, the stability of short double‐stranded RNA molecules in the blood and efficiency of siRNA delivery into target organs or tissues following systemic administration have been the major issues that limit applications of siRNA in human patients. In this study, multifunctional siRNA delivery nanoparticles are developed that combine imaging capability of nanoparticles with urokinase plasminogen activator receptor‐targeted delivery of siRNA expressing DNA nanocassettes. This theranostic nanoparticle platform consists of a nanoparticle conjugated with targeting ligands and double‐stranded DNA nanocassettes containing a U6 promoter and a shRNA gene for in vivo siRNA expression. Targeted delivery and gene silencing efficiency of firefly luciferase siRNA nanogenerators are demonstrated in tumor cells and in animal tumor models. Delivery of survivin siRNA expressing nanocassettes into tumor cells induces apoptotic cell death and sensitizes cells to chemotherapy drugs. The ability of expression of siRNAs from multiple nanocassettes conjugated to a single nanoparticle following receptor‐mediated internalization should enhance the therapeutic effect of the siRNA‐mediated cancer therapy.  相似文献   

4.
Although tremendous efforts have been made on targeted drug delivery systems, current therapy outcomes still suffer from low circulating time and limited targeting efficiency. The integration of cell‐mediated drug delivery and theranostic nanomedicine can potentially improve cancer management in both therapeutic and diagnostic applications. By taking advantage of innate immune cell's ability to target tumor cells, the authors develop a novel drug delivery system by using macrophages as both nanoparticle (NP) carriers and navigators to achieve cancer‐specific drug delivery. Theranostic NPs are fabricated from a unique polymer, biodegradable photoluminescent poly (lactic acid) (BPLP‐PLA), which possesses strong fluorescence, biodegradability, and cytocompatibility. In order to minimize the toxicity of cancer drugs to immune cells and other healthy cells, an anti‐BRAF V600E mutant melanoma specific drug (PLX4032) is loaded into BPLP‐PLA nanoparticles. Muramyl tripeptide is also conjugated onto the nanoparticles to improve the nanoparticle loading efficiency. The resulting nanoparticles are internalized within macrophages, which are tracked via the intrinsic fluorescence of BPLP‐PLA. Macrophages carrying nanoparticles deliver drugs to melanoma cells via cell–cell binding. Pharmacological studies also indicate that the PLX4032 loaded nanoparticles effectively kill melanoma cells. The “self‐powered” immune cell‐mediated drug delivery system demonstrates a potentially significant advancement in targeted theranostic cancer nanotechnologies.  相似文献   

5.
Chemotherapy is well recognized to induce immune responses during some chemotherapeutic drugs‐mediated tumor eradication. Here, a strategy involving blocking programmed cell death protein 1 (PD‐1) to enhance the chemotherapeutic effect of a doxorubicin nanoprodrug HA‐Psi‐DOX is proposed and the synergetic mechanism between them is further studied. The nanoprodrugs are fabricated by conjugating doxorubicin (DOX) to an anionic polymer hyaluronic acid (HA) via a tumor overexpressed matrix metalloproteinase sensitive peptide (CPLGLAGG) for tumor targeting and enzyme‐activated drug release. Once accumulated at the tumor site, the nanoprodrug can be activated to release antitumor drug by tumor overexpressed MMP‐2. It is found that HA‐Psi‐DOX nanoparticles can kill tumor cells effectively and initiate an antitumor immune response, leading to the upregulation of interferon‐γ. This cytokine promotes the expression of programmed cell death protein‐ligand 1 (PD‐L1) on tumor cells, which will cause immunosuppression after interacting with PD‐1 on the surface of lymphocytes. The results suggest that the therapeutic efficiency of HA‐Psi‐DOX nanoparticles is significantly improved when combined with checkpoint inhibitors anti‐PD‐1 antibody (α‐PD1) due to the neutralization of immunosuppression by blocking the interaction between PD‐L1 and PD‐1. This therapeutic system by combining chemotherapy and immunotherapy further increases the link between conventional tumor therapies and immunotherapy.  相似文献   

6.
Although the chemo- and immuno-therapies have obtained good responses for several solid tumors, including those with brain metastasis, their clinical efficacy in glioblastoma (GBM) is disappointing. The lack of safe and effective delivery systems across the blood-brain barrier (BBB) and the immunosuppressive tumor microenvironment (TME) are two main hurdles for GBM therapy. Herein, a Trojan-horse-like nanoparticle system is designed, which encapsulates biocompatible PLGA-coated temozolomide (TMZ) and IL-15 nanoparticles (NPs) with cRGD-decorated NK cell membrane (R-NKm@NP), to elicit the immunostimulatory TME for GBM chemo-immunotherapy. Taking advantage of the outer NK cell membrane cooperating with cRGD, the R-NKm@NPs effectively traversed across the BBB and targeted GBM. In addition, the R-NKm@NPs exhibited good antitumor ability and prolonged the median survival of GBM-bearing mice. Notably, after R-NKm@NPs treatment, the locally released TMZ and IL-15 synergistically stimulated the proliferation and activation of NK cells, leading to the maturation of dendritic cells and infiltration of CD8+ cytotoxic T cells, eliciting an immunostimulatory TME. Lastly, the R-NKm@NPs not only effectively prolonged the metabolic cycling time of the drugs in vivo, but also has no noticeable side effects. This study may offer valuable insights for developing biomimetic nanoparticles to potentiate GBM chemo- and immuno-therapies in the future.  相似文献   

7.
Hyperthermia can be produced by near-infrared laser irradiation of gold nanoparticles present in tumors and thus induce tumor cell killing via a bystander effect. To be clinically relevant, however, several problems still need to be resolved. In particular, selective delivery and physical targeting of gold nanoparticles to tumor cells are necessary to improve therapeutic selectivity. Considerable progress has been made with respect to retargeting adenoviral vectors for cancer gene therapy. We therefore hypothesized that covalent coupling of gold nanoparticles to retargeted adenoviral vectors would allow selective delivery of the nanoparticles to tumor cells, thus feasibilizing hyperthermia and gene therapy as a combinatorial therapeutic approach. For this, sulfo-N-hydroxysuccinimide labeled gold nanoparticles were reacted to adenoviral vectors encoding a luciferase reporter gene driven by the cytomegalovirus promoter (AdCMVLuc). We herein demonstrate that covalent coupling could be achieved, while retaining virus infectivity and ability to retarget tumor-associated antigens. These results indicate the possibility of using adenoviral vectors as carriers for gold nanoparticles.  相似文献   

8.
New molecular biology techniques have uncovered the hidden role of genes in cancer. Identification of activated oncogenes, as fundamental genetic differences relative to normal cells, has made it possible to consider such genes as targets for antitumor therapy, namely by applying gene silencing strategies. In this regard, antisense oligonucleotides or small interfering RNAs, constitute promising therapeutic tools. The widespread clinical application of such molecules as modulators of gene expression, is still dependent on several aspects that limit their bioavailability, including: enhanced biological stability, favourable pharmacokinetics, enhanced tumor cell uptake and, consequently, efficient targeted delivery. One of the most promising strategies to overcome the barriers faced by gene silencing molecules, upon systemic administration, involves the use of lipid-based nanoparticles. The first part of this review aims at providing the reader with the molecular mechanism of action of the most important gene silencing molecules used in anticancer therapy. The primary obstacle for translating gene silencing technology from an effective research tool into a feasible therapeutic strategy remains its efficient delivery to the targeted cell type in vivo. Therefore, an overview of different lipid-based strategies for nucleic acid delivery will be presented on the second part. As we learn more about the pharmacokinetics and pharmacodynamics of the carrier and/or of the gene silencing molecules, it will be possible to further improve the delivery strategy that likely in the future will lead to the ideal non-viral particle for targeted cancer systemic gene silencing.  相似文献   

9.
Stimuli‐responsive drug‐delivery systems constitute an appealing approach to direct and restrict drug release spatiotemporally at the specific site of interest. However, it is difficult for most systems to affect every cancer cell in a tumor tissue due to the presence of the natural tumor barrier, leading to potential tumor recurrence. Here, core–shell magnetoresponsive virus‐mimetic nanocapsules (VNs), which can infect cancer cells sequentially and double as a magnetothermal agent fabricated through anchoring iron oxide nanoparticles in a single‐component protein (lactoferrin) shell, are reported. With large payload of hydrophilic/hydrophobic anticancer cargos, doxorubicin and palictaxel, VNs can simultaneously give a rapid drug release and intense heat while applying an external high‐frequency magnetic field (HFMF). Furthermore, after being liberated from dead cells by HFMF manipulation, the constructive VNs can sequentially infect neighboring cancer cells and deliver sufficient therapeutic agents to next targeted sites. With high efficiency for sequential cell infections, VNs have successfully eliminated subcutaneous tumor after a combinatorial treatment. These results demonstrate that the VNs could be used for locally targeted, on‐demand, magnetoresponsive chemotherapy/hyperthermia, combined with repeated cell infections for tumor therapy and other therapeutic applications.  相似文献   

10.
The progression and metastasis of solid tumors rely strongly on neovascularization. However, angiogenesis inhibitors alone cannot meet the needs of tumor therapy. This study prepared a new drug conjugate (PTX-GSHP-CYS-ES2, PGCE) by combining polysaccharides (heparin without anticoagulant activity, GSHP), chemotherapeutic drugs (paclitaxel, PTX), and antiangiogenic drugs (ES2). Furthermore, a tumor-targeted prodrug nanoparticle delivery system is established. The nanoparticles appear to accumulate in the mitochondrial of tumor cells and achieve ES2 and PTX release under high glutathione and acidic environment. It has been confirmed that PGCE inhibited the expression of multiple metastasis-related proteins by targeting the tumor cell mitochondrial apparatus and disrupting their structure. Furthermore, PGCE nanoparticles inhibit migration, invasion, and angiogenesis in B16F10 tumor-bearing mice and suppress tumor growth and metastasis in vitro. Further in vitro and in vivo experiments show that PGCE has strong antitumor growth and metastatic effects and exhibits efficient anti-angiogenesis properties. This multi-targeted nanoparticle system potentially enhances the antitumor and anti-metastatic effects of combination chemotherapy and antiangiogenic drugs.  相似文献   

11.
The absence of targeted, single treatment methods produces low therapeutic value for treating cancers. To increase the accumulation of drugs in tumors and improve the treatment effectiveness, near‐infrared 808 nm photothermal responsive dual aptamers‐targeted docetaxel (DTX)‐containing nanoparticles is proposed. In this system, DTX and NH4HCO3 are loaded in thermosensitive liposomes. The surface of liposomes is coated with gold nanoshells and connected with sulfydryl (SH? ) modified AS1411 and S2.2 aptamers. The nanosystem has good biocompatibility and uniform size (diameter about 200 nm). The drug is rapidly released, reaching a maximum amount (84%) at 4 h under 808 nm laser irradiation. The experiments conducted in vitro and in vivo demonstrate the nanosystem can synergistically inhibit tumor growth by combination of chemotherapy, photothermal therapy, and biological therapy. Dual ligand functionalization significantly increases cellular uptake on breast cancer cell line (MCF‐7) cells and achieves ultrasound imaging (USI) at tumor site. The results indicate that this drug delivery system is a promising theranostic agent involving light‐thermal response at tumor sites, dual ligand targeted triplex therapy, and USI.  相似文献   

12.
There is a pressing need to develop more effective therapeutics to fight cancer. An idyllic chemotherapeutic is expected to overcome drug resistance of tumors and minimize harmful side effects to healthy tissues. Antibody‐functionalized porous silicon nanoparticles loaded with a combination of chemotherapy drug and gold nanoclusters (AuNCs) are developed. These nanocarriers are observed to selectively deliver both payloads, the chemotherapy drug and AuNCs, to human B cells. The accumulation of AuNCs to target cells and subsequent exposure to an external electromagnetic field in the microwave region render them more susceptible to the codelivered drug. This approach represents a targeted two‐stage delivery nanocarrier that benefits from a dual therapeutic action that results in enhanced cytotoxicity.  相似文献   

13.
The use of biodegradable polymeric nanoparticles (NPs) for controlled drug delivery has shown significant therapeutic potential. Polyaspartic acid and polylactic acid are the most intensively studied biodegradable polymers. In the present study, novel amphiphilic biodegradable co-polymer NPs, poly(L-aspartic acid-co-lactic acid) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) (poly(AA-co-LA)/DPPE) is synthesized and subsequently used to encapsulate an antitumor drug doxorubicin (DOX). The formulation parameters of the NPs are optimized to improve encapsulation efficiency. The resulting drug-loaded NPs possess better size homogeneity (polydispersity) and exhibit pH-responsive drug release profiles. Cellular viability assays indicate that the poly(AA-co-LA)/DPPE NPs did not induce cell death, whereas doxorubicin encapsulated NPs were cytotoxic to various types of tumor cells. In addition, the free NPs could not enter the cell nuclei after internalized in tumor cells. The DOX-loaded NPs exhibit efficient intracellular delivery in tumor cells with co-localization in lysosome and delay entering into the nucleus, which suggests a time- and pH-dependent drug release profile within cells. When applied to deliver chemotherapeutics to a mouse xenograft model of human lung adenocarcinoma, DOX-loaded NPs have a comparable antitumor activity with free DOX, and greatly reduce systemic toxicity and mortality. The delivery of cytotoxic drugs directly to the nucleus specifically within tumor cells is of great interest. These results demonstrate the feasibility of the application of the amphiphilic polyaspartic acid derivative, poly(AA-co-LA)/DPPE, as a nanocarrier for cell nuclear delivery of potent antitumor drugs.  相似文献   

14.
In the anti‐cancer war, there are three main obstacles resulting in high mortality and recurrence rate of cancers: the severe toxic side effect of anti‐cancer drugs to normal tissues due to the lack of tumor‐selectivity, the multi‐drug resistance (MDR) to free chemotherapeutic drugs and the deadly metastases of cancer cells. The development of state‐of‐art nanomedicines based on mesoporous silica nanoparticles (MSNs) is expected to overcome the above three main obstacles. In the view of the fast development of anti‐cancer strategy, this review highlights the most recent advances of MSN anti‐cancer nanomedicines in enhancing chemotherapeutic efficacy, overcoming the MDR and inhibiting metastasis. Furthermore, we give an outlook of the future development of MSNs‐based anti‐cancer nanomedicines, and propose several innovative and forward‐looking anti‐cancer strategies, including tumor tissue?cell?nuclear successionally targeted drug delivery strategy, tumor cell‐selective nuclear‐targeted drug delivery strategy, multi‐targeting and multi‐drug strategy, chemo‐/radio‐/photodynamic‐/ultrasound‐/thermo‐combined multi‐modal therapy by virtue of functionalized hollow/rattle‐structured MSNs.  相似文献   

15.
Energy metabolism abnormity is one of the most significant hallmarks of cancer. As a result, large amino acid transporter 1 (LAT1) is remarkably overexpressed in both blood‐brain‐barrier and glioma tumor cells, leading a rapid and sufficient substrate transportation. 3CDIT and 4CDIT are originally synthesized by modifying the existing most potent LAT1 substrate. 3CDIT is selected as its higher glioma‐targeting ability. Since the microenvironment variation in tumor cells is another important feature of cancer, a great disparity in adenosine‐5′‐triphosphate (ATP) and glutathione (GSH) levels between extracellular and intracellular milieu can provide good possibilities for dual‐responsive drug release in tumor cells. Doxorubicin (DOX) is successfully intercalated into the ATP aptamer DNA scaffolds, compressed by GSH‐responsive polymer pOEI, and modified with 3CDIT to obtain 3CDIT‐targeting pOEI/DOX/ATP aptamer nanoparticles (NPs). Enhanced NP accumulation and rapid GSH & ATP dual‐responsive DOX release in glioma are demonstrated both in vitro and in vivo. More efficient therapeutic effects are shown with 3CDIT‐targeting pOEI/DOX/ATP aptamer NPs than free DOX and no systemic toxicity is observed. Therefore, glioma‐targeting delivery and GSH & ATP dual‐responsive release guarantee an adequate DOX accumulation within tumor cells and ensure a safe and efficient chemotherapy for glioma.  相似文献   

16.
A large number of chemotherapeutic and immunotherapeutic agents have been shown to be less effective when exposed to a hypoxic solid tumor. The tumor hypoxia microenvironment contributes to multidrug resistance and immunosuppression, and current delivery of oxygen or enzyme to alleviate hypoxic microenvironment is often limited by the oxygen supplying capacity of material-based carriers and short window of oxygen production. Herein, macrophage membrane coated chlorella (M-Chl) is constructed for targeted delivery to the solid tumor and sustainable oxygen production via photosynthesis, which provides a new general strategy to overcome tumor hypoxia and improve chemotherapy and immunotherapy. The camouflaged strategy via macrophage membrane coating enhances tumor accumulation and retention of Chl due to the inflammatory homing effects of macrophage membrane, which contributes to long term oxygen production for at least 6 days with one dose of Chl, resulting in efficient downregulation of tumor HIF-1α. In vivo antitumor therapy in mice shows that M-Chl enhances the chemotherapeutic efficacy of doxorubicin via inhibiting hypoxia-mediated overexpression of drug efflux proteins, and also improves the poor immunotherapeutic performance of T cell activation agent, anti-CTLA-4 antibody, via downregulating hypoxia-mediated immunosuppressive proteins. Thus, M-Chl may serve as an important adjuvant for enhancing the therapeutic efficacy of clinical antitumor drugs against solid tumors.  相似文献   

17.
The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in oncology. The use of nanovesicles (NVs) as chemotherapeutic delivery vehicles has been recently proven successful, yet monotherapy with monomodalities remains a significant limitation for solid tumor treatment. Here, as a proof of principle, a novel cell‐membrane‐derived NVs that can display full‐length monoclonal antibodies (mAbs) is engineered. The high affinity and specificity of mAb for tumor‐specific antigens allow these vesicular antibodies (VAs) to selectively deliver a cytotoxic agent to tumor cells and exert potent inhibition effects. These VAs can also regulate the tumor immune microenvironment. They can mediate antibody‐dependent cellular cytotoxicity to eradicate tumor cells via recruitment and activation of natural killer cells in the tumor. Upon further encapsulation with chemotherapeutic agents, the VAs show unequaled cooperative effects in chemotherapy and immunotherapy in tumor‐bearing mice. As far as it is known, this is the first report of a VA‐based multifunctional combination therapy platform. This might lead to additional applications of vesicular antibodies in cancer theranostics.  相似文献   

18.
Glioblastoma multiforme (GBM) is a very common type of “incurable” malignant brain tumor. Although many treatment options are currently available, most of them eventually fail due to its recurrence. Boron neutron capture therapy (BNCT) emerges as an alternative noninvasive therapeutic treatment modality. The major challenge in treating GBMs using BNCT is to achieve selective imaging, targeting, and sufficient accumulation of boron‐containing drug at the tumor site so that effective destruction of tumor cells can be achieved without harming the normal brain cells. To tackle this challenge, this study demonstrates for the first time that an unprecedented 10B‐enriched (96% 10B enrichment) boron nanoparticle nanomedicine (10BSGRF NPs) surface‐modified with a Fluorescein isothiocyanate (FITC)‐labeled RGD‐K peptide can pass through the brain blood barrier, selectively target at GBM brain tumor sites, and deliver high therapeutic dosage (50.5 µg 10B g?1 cells) of boron atoms to tumor cells with a good tumor‐to‐blood boron ratio of 2.8. The 10BSGRF NPs not only can enhance the contrast of magnetic resonance (MR) imaging to help diagnose the location/size/progress of brain tumor, but also effectively suppress murine brain tumors via MR imaging‐guided BNCT, prolonging the half‐life of mice from 22 d (untreated group) to 39 d.  相似文献   

19.
The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron‐oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI–SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI–SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g?1. They feature specific pH‐sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose‐dependent. In vitro transdermal studies demonstrate that the EPI–SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic‐field‐assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION‐based vector for feasible transdermal therapy of skin cancer.  相似文献   

20.
A multifunctional nanoparticle based on gold nanorod (GNR), utilizing mRNA triggered chemo‐drug release and near‐infrared photoacoustic effect, is developed for a combined chemo‐photoacoustic therapy. The constructed nanoparticle (GNR‐DNA/FA:DOX) comprises three functional components: (i) GNR as the drug delivery platform and photoacoustic effect enhancer; (ii) toehold‐possessed DNA dressed on the GNR to load doxorubicin (DOX) to implement a tumor cell specific chemotherapy; and (iii) folate acid (FA) modified on GNR to guide the nanoparticle to target tumor cells. The results show that, upon an effective and specific delivery of the nanoparticles to the tumor cells with overexpressed folate receptors, the cytotoxic DOX loaded on the GNR‐DNA nanoplatform can be released through DNA displacement reaction in melanoma‐associated antigen gene mRNA expressed cells. With 808 nm pulse laser irradiation, the photoacoustic effect of the GNR leads to a direct physical damage to the cells. The combined treatment of the two modalities can effectively destroy tumor cells and eradicate the tumors with two distinctively different and supplementing mechanisms. With the nanoparticle, photoacoustic imaging is successfully performed in situ to monitor the drug distribution and tumor morphology for therapeutical guidance. With further in‐depth investigation, the proposed nanoparticle may provide an effective and safe alternative cancer treatment modality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号