首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
因为移动P2P网络具有动态性而且移动节点能量受限,提升移动P2P数据传输效率至关重要.利用蚁群优化算法,将蚂蚁的信息素与节点的能量和通信带宽结合起来,在蚁群选择路径时,减少其寻优路径上的信息素浓度,根据概率路由表中信息素的浓度对路由选择策略进行调整,避免网络拥塞和个别节点能量消耗过快,提出了一种移动P2P网络的多路径路由选择算法.实验结果表明,与EDSR路由协议相比,提出的算法能够降低节点的分组丢失率和端到端的平均时延,提高了网络的生存周期.  相似文献   

2.
那勇  田美燕  李燕  徐萌 《激光杂志》2015,(2):127-130
为了降低节点能量消耗,延长网络生存的时间,提出了一种改进蚁群算法的无线传感器网络路由机制。首先将无线传感器网络服务质量分为3类,然后利用蚁群算法可以自适应网络状况动态性的优势,构建传感器节点转移函数和信息素更新规则,自适应构建数据路由,最后采用仿真模拟实验对算法性能进行检验。实验结果表明,相对于与现有无线传感器路由算法,本文通过引入蚁群优化机理挖掘传感器节点之间的关联性,数据传输延迟、可靠性和能量开销上具有更好的性能,使整个网络性能保持最优。  相似文献   

3.
改进的蚁群算法及其在TSP中的应用研究   总被引:16,自引:0,他引:16  
孙力娟  王良俊  王汝传 《通信学报》2004,25(10):111-116
提出一种改进的蚁群算法,其核心是应用遗传算法对蚁群算法的 4 个控制参数(α、β、ρ、q0)进行优化,以及运用 MMAS(max-min ant system)进行寻径,新算法具有全局搜索能力强的特点。对旅行商问题(TSP)的仿真实验结果表明:新算法的优化质量和效率都优于传统蚁群算法和遗传算法。  相似文献   

4.
王丽红  刘胜辉 《信息技术》2008,32(1):108-109,113
蚁群算法是一种新型的模拟进化算法,具有一些优良性质,但是蚁群算法容易陷入局部最优,且初期信息素匮乏导致求解速度慢.针对这一特点,在蚁群算法中引入遗传变异操作,并对蚁群算法做了改进.实验结果表明此方法行之有效.  相似文献   

5.
Gossip协议是P2P网络的一种流行的资源发现算法,但它没有考虑寻找最低成本的资源。论文提出了基于蚁群算法的新的资源发现算法,在查找资源的同时,综合考虑路径载荷、延时等因素,找到综合费用最低的路径。仿真实验表明,该算法比Dijkstra算法解集的平均综合费用低10%左右,从而能更有效地利用网络资源。  相似文献   

6.
为提高复杂军用物资军用物质优化配置问题,而军用物质配送的核心是车辆调度问题。为此,在合理分析军用物质车辆调度问题的特性和模型基础上,将蚁群算法引入到其中解决该问题。实验表明,在带有时间窗的车辆路径问题上,该算法能够有效地提高解决收敛速度与精确度,更好地实现车辆调度的使用性。  相似文献   

7.
基于蚁群算法的有时间窗车辆调度问题的研究   总被引:3,自引:0,他引:3  
有时间窗的车辆调度问题(vSPITw)是一个复杂的非线性组合优化问题,一般运用分阶段方法求解。现将蚁群算法应用于车辆调度问题,设计动态确定车辆数和随机搜索路径的新方法,实现车辆数和路径长度的同时优化,并对蚁群算法的信息素更新规则进行了改进,以优化其搜索能力和加快收敛速度。同时给出了算法的实现过程,通过对实例求解,取得了满意的结果。  相似文献   

8.
针对在任务卸载时由于设备的移动而导致任务迁移这一问题,将任务卸载过程建模为马尔科夫决策过程,并通过优化资源分配和任务卸载策略,解决基于联合时延和能耗的损耗函数最小的优化问题。首先将问题转化为最小化损耗函数之和,并在决策前对每个任务的传输功率采用二分法进行优化,然后基于获得的传输功率提出一种QLBA(Q-learning Based Algorithm)来完成卸载决策。仿真结果证实所提方案优于传统算法。  相似文献   

9.
在研究蚁群算法、任务分配和资源调度的基础上,提出了一种改进的蚁群资源调度算法.首先通过引入节点可信度机制在一定程度上增强了云计算资源的搜索能力和节点完成任务的成功率.然后在改进的算法中使用了信息素的局部更新机制和全局更新机制,可以有效地平衡负载.最后通过选取合适的参数利用CloudSim仿真工具对改进的资源调度算法进行实验测试,实验结果表明此算法缩短了任务的执行时间,改善了云计算资源调度的性能.  相似文献   

10.
基于改进蚁群算法的机器人路径规划   总被引:1,自引:0,他引:1  
采用MAKLINK图论建立机器人路径规划的空间模型,利用Dijkstra算法减少工作空间的搜索范围,引入免疫算子,将其融合到蚁群算法的每次迭代过程中,提高蚁群算法在全局搜索空间的遍历性和收敛速率,避免陷入局部最优解。  相似文献   

11.
To resolve the excessive system overhead and serious traffic congestion in user-oriented service function chain (SFC) embedding in mobile edge computing (MEC) networks,a content-oriented joint wireless multicast and SFC embedding algorithm was proposed for the multi-base station and multi-user edge networks with MEC servers.By involving four kinds of system overhead,including service flow,server function sustaining power,server function service power and wireless transmission power,an optimization model was proposed to jointly design SFC embedding with multicast beamforming.Firstly,with Lagrangian dual decomposition,the problem was decoupled into two independent subproblems,namely,SFC embedding and multicast beamforming.Secondly,with the Lp norm penalty term-based successive convex approximation algorithm,the integer programming-based SFC embedding problem was relaxed to an equivalent linear programming one.Finally,the non-convex beamforming optimization problem was transformed into a series of convex ones via the path following technique.Simulation results revealed that the proposed algorithm has good convergence,and is superior to both the optimal SFC embedding with unicasting and random SFC embedding with multicasting in terms of system overhead.  相似文献   

12.
Gang LI  Zhijun WU 《通信学报》2019,40(7):27-37
An ant colony optimization task scheduling algorithm based on multiple quality of service constraint (QoS-ACO) for SWIM was proposed.Focusing on the multiple quality of service (QoS) requirements for task requests completed in system-wide information management (SWIM),considering the task execution time,security and reliability factors,a new evaluate user satisfaction utility function and system task scheduling model were constructed.Using the QoS total utility evaluation function of SWIM service scheduling to update the pheromone of the ant colony algorithm.The simulation results show that under the same conditions,the QoS-ACO algorithm is better than the traditional Min-Min algorithm and particle swarm optimization (PSO) algorithm in terms of task completion time,security,reliability and quality of service total utility evaluation value,and it can ensure that the user's task scheduling quality of service requirements are met,and can better complete the scheduling tasks of the SWIM.  相似文献   

13.
Forthe problem that in interactive network,the illegal and abnormal behaviors were becoming more hidden,moreover,the complex relation in real interactive network heightens the difficulty of detecting anomalous entities,an ant colony model was proposed for extracting the backbone network from the complex interactive network.The novel model simulated the relationships among entities based on the theory of path optimization,reduced the network size after quantifying the significance of each flow of information.Firstly,a strategy of initial location selection was proposed taking advantage of network centrality.Secondly,a novel path transfer mechanism was devised for the ant colony to fit the flow behavior of entities.Finally,an adaptive and dynamic pheromone update mechanism was designed for guiding the optimization of information flows.The experimental results show that the proposed model is superior to the traditional ant colony algorithm in both solving quality and solving performance,and has better coverage and accuracy than the greedy algorithm.  相似文献   

14.
针对蚁群算法在求解大规模优化问题时存在的3个缺点:消耗时间长、蚂蚁在下次搜索时目标导向不强导致搜索随机性大、寻优路径上的信息素过度增强导致得到假的最优解。本文提出了基于边缘初始化和自适应全局信息素的改进蚁群算法。在相同参数下,其搜索时间大大缩短,并且得到了更好的最优解。将其应用到旅行商(TSP)问题中,和基本蚁群算法、遗传算法相比较,其具有以下优点:较好的搜索最优解的能力;对新解不会过早的终止;探索新解的能力进一步增强。因此,改进的蚁群算法在求解TSP等组合优化问题时非常有效。  相似文献   

15.
针对WDM光网络的恢复,提出一种基于蚁群算法(ACA)的WDM光网络恢复优化算法,算法以WDM光网络的虚拓扑为主要研究对象,模拟蚂蚁寻址方式获得网络业务受损节点恢复方案.在优化过程中,结合免疫算法的变异操作对全局业务分配进行自适应调节,以获得更高的故障恢复率水平,最终实现网络受损业务恢复,使整个网络资源利用率达到最优.仿真结果表明,该算法可满足较高的恢复率需求情况,并可应用于任意形式WDM网络拓扑结构.  相似文献   

16.
雷达干扰任务分配的蚁群算法实现   总被引:2,自引:0,他引:2  
合理分配干扰目标是雷达干扰任务区分中的难点问题.提出了一种基于蚁群算法的新型的目标分配算法模型,并进行了算法实验.实验结果表明,基于蚁群算法思想的目标分配算法是有效的,特别是问题规模较大时更显示出其较快的收敛速度和较高的精度.  相似文献   

17.
于霞  杨光 《长江信息通信》2021,34(3):30-32,35
城市交通工具的合理调度能够有效缓解日益严峻的交通压力,出租车作为公共出行的交通工具满足了大量的出行需求。蚁群算法(ACO)作为仿生算法的代表,根据蚂蚁个体产生的信息素,通过不同策略和信息素更新等操作,逐步接近最优解,适合解决城市交通资源路径规划问题。文章给出一种改进的蚁群算法进行出租车调度,在不同时间段内,对非热点区域向热点区域以及热点区域向非热点区域转移进行研究,根据信息素差异化特征,首先建立了时间区域优化算法和区域调度模型,通过对数据样本的训练得到不同情况下的转移概率和行驶里程,从而确定最优的抑制因子和调节参数,提高出租车转移概率并减少空载行驶距离,实现对出租车资源的合理分配。  相似文献   

18.
在线铁谱图像获取机器磨损状态信息是铁谱诊断技术的核心和瓶颈。针对在线铁谱磨粒图像的Kirsch边缘检测特征不明显和Otsu(最大类间方差法)获取最佳阈值的局限性及耗时等问题,设计了一种基于蚁群算法改进Otsu方法完成图像分割,并结合Kirsch边缘检测来提取磨粒图像信息的新方法。首先通过Kirsch算子检测出图像边缘.然后运用基于蚁群算法改进Otsu方法求取最佳阈值并进行二值化处理.最后采用灰度堆栈空间实现磨粒自动定位。通过现场对三峡电厂5号水轮发电机组2012年油液进行试验和数据分析、及近一年的机组开机老化运行.得出所设计的算法能够有效提取磨粒图像信息,同时节省运算时间,对水轮机组故障预测、诊断起到了良好的实际作用。  相似文献   

19.
为了解决传统边缘检测算法对全方向M型心动图检测效果差的问题,根据基于蚁群算法边缘检测的思想,提出一种基于改进的蚁群算法的边缘检测算法。根据心动图间接来源于CT图的原理,一幅心动图中包含目标、背景、边界和噪声等内容,因此采用传统的边缘检测算法的效果并不理想。这里在传统蚁群算法边缘检测的基础上,根据心动图的特点,采取改进的转移规则和信息素更新策略,以提高检测精度和适应性。再逐步细化,使用蚂蚁算法进行详细的检测,得到最佳的运动曲线。实验结果表明,该算法可以获得精确的运动曲线,其结果能够比传统的方法获得更丰富更真实的心动图运动细节信息,为医生的诊断提供更多信息。  相似文献   

20.
移动边缘计算(Mobile Edge Computing,MEC)将云服务器的计算资源扩展到更靠近用户一侧的网络边缘,使得用户可以将任务卸载到边缘服务器,从而克服原先云计算中将任务卸载到云服务器所带来的高时延问题。首先介绍了移动边缘计算的基本概念、基本框架和应用场景,然后围绕卸载决策、联合资源分配的卸载决策分别从单MEC服务器和多MEC服务器两种场景总结了任务卸载技术的研究现状,最后结合当前MEC卸载技术中存在的不足展望了未来MEC卸载技术的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号