首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
    
Photoacoustic (PA) imaging agents detect disease tissues and biomarkers with increased penetration depth and enhanced spatial resolution relative to traditional optical imaging, and thus hold great promise for clinical applications. However, existing PA imaging agents often encounter the issues of slow body excretion and low-signal specificity, which compromise their capability for in vivo detection. Herein, a fluoro-photoacoustic polymeric renal reporter (FPRR) is synthesized for real-time imaging of drug-induced acute kidney injury (AKI). FPRR simultaneously turns on both near-infrared fluorescence (NIRF) and PA signals in response to an AKI biomarker (γ-glutamyl transferase) with high sensitivity and specificity. In association with its high renal clearance efficiency (78% at 24 h post-injection), FPRR can detect cisplatin-induced AKI at 24 h post-drug treatment through both real-time imaging and optical urinalysis, which is 48 h earlier than serum biomarker elevation and histological changes. More importantly, the deep-tissue penetration capability of PA imaging results in a signal-to-background ratio that is 2.3-fold higher than NIRF imaging. Thus, the study not only demonstrates the first activatable PA probe for real-time sensitive imaging of kidney function at molecular level, but also highlights the polymeric probe structure with high renal clearance.  相似文献   

4.
Room-temperature sodium–sulfur (RT-Na/S) batteries possess high potential for grid-scale stationary energy storage due to their low cost and high energy density. However, the issues arising from the low S mass loading and poor cycling stability caused by the shuttle effect of polysulfides seriously limit their operating capacity and cycling capability. Herein, sulfur-doped graphene frameworks supporting atomically dispersed 2H-MoS2 and Mo1 (S@MoS2-Mo1/SGF) with a record high sulfur mass loading of 80.9 wt.% are synthesized as an integrated dual active sites cathode for RT-Na/S batteries. Impressively, the as-prepared S@MoS2-Mo1/SGF display unprecedented cyclic stability with a high initial capacity of 1017 mAh g−1 at 0.1 A g−1 and a low-capacity fading rate of 0.05% per cycle over 1000 cycles. Experimental and computational results including X-ray absorption spectroscopy, in situ synchrotron X-ray diffraction and density-functional theory calculations reveal that atomic-level Mo in this integrated dual-active-site forms a delocalized electron system, which could improve the reactivity of sulfur and reaction reversibility of S and Na, greatly alleviating the shuttle effect. The findings not only provide an effective strategy to fabricate high-performance dual-site cathodes, but also deepen the understanding of their enhancement mechanisms at an atomic level.  相似文献   

5.
An imaging atom probe has been incorporated in a conventional field ion microscope in our laboratory. The principle and instrumentation of the probe has been discussed.  相似文献   

6.
    
Bulk gold's attributes of relative chemical inertness, rarity, relatively low melting point and its beautiful sheen make it a prized material for humans. Recordings suggest it was the first metal employed by humans dating as far back to the late Paleolithic period ≈40 000 BC. However, at the nanoscale gold is expected to present new and exciting properties, not least in catalysis. Moreover, recent studies suggest a new family of single‐atom‐thick two‐dimensional (2D) metals exist. This work shows single‐atom‐thick freestanding gold membranes and nanoribbons can form as suspended structures in graphene pores. Electron irradiation is shown to lead to changes to the graphene pores which lead to dynamic changes of the gold membranes which transition to a nanoribbon. The freestanding single‐atom‐thick 2D gold structures are relatively stable to electron irradiation for extended periods. The work should advance the development of 2D gold monolayers significantly.  相似文献   

7.
    
Gadolinium (Gd)-based complexes are extensively utilized as contrast agents (CAs) in magnetic resonance imaging (MRI), yet, suffer from potential safety concerns and poor tumor targeting. Herein, as a mimic of Gd complex, single-atom Gd nanoprobes with r1 and r2 values of 34.2 and 80.1 mM−1 s−1 (far higher than that of commercial Gd CAs) at 3 T are constructed, which possessed T1/T2 dual-mode MRI with excellent stability and good tumor targeting ability. Specifically, single-atom Gd is anchored on nitrogen-doped carbon matrix (Gd-NxC) through spatial-confinement method, which is further subjected to controllable chemical etching to afford fully etched bowl-shape Gd-NxC (feGd-NxC) with hydrophilic properties and defined coordination structure, similar to commercial Gd complex. Such nanostructures not only maximized the Gd3+ site exposure, but also are suitable for self-confirmative diagnosis through one probe with dual-mode MRI. Moreover, the strong electron localization and interaction between Gd and N atoms afforded feGd-NxC excellent kinetic inertness and thermal stability (no significant Gd3+ leaching is observed even incubated with Cu2+ and Zn2+ for two months), providing a creative design protocol for MRI CAs.  相似文献   

8.
    
Calcium overload and ROS overproduction, two major triggers of acute kidney injury (AKI), are self-amplifying and mutually reinforcing, forming a complicated cascading feedback loop that induces kidney cell “suicide” and ultimately renal failure. There are currently no clinically effective drugs for the treatment of AKI, excluding adjuvant therapy. In this study, a porous silicon-based nanocarrier rich in disulfide bond skeleton (<50 nm) is developed that enables efficient co-loading of the hydrophilic drug borane amino complex and the hydrophobic drug BAPTA-AM, with its outer layer sealed by the renal tubule-targeting peptide PEG-LTH. Once targeted to the kidney injured site, the nanocarrier structure collapses in the high glutathione environment of the early stage of AKI, releasing the drugs. Under the action of the slightly acidic inflammatory environment and intracellular esterase, the released drugs produce hydrogen and BAPTA, which can rapidly eliminate the excess ROS and overloaded Ca2+, blocking endoplasmic reticulum/mitochondrial apoptosis pathway (ATF4-CHOP-Bax axis, Casp-12-Casp-3 axis, Cyt-C-Casp-3 axis) and inflammatory pathway (TNF-α-NF-κB axis) from the source, thus rescuing the renal cells in the “critical survival” state and further restoring the kidney function. Overall, this nanoparticle shows substantial clinical promise as a potential therapeutic strategy for I/R injury-related diseases.  相似文献   

9.
用原子探针层析技术和时效模拟方法,研究了不同N i含量并且提高了Cu含量的反应堆压力容器(RPV)用模拟钢中富Cu、富N i和富Mn原子团簇的形成。结果表明,提高钢中的N i含量会促使富Cu原子团簇的析出,富Cu原子团簇中含有N i和Mn。实验检测到富N i的原子团簇,团簇中含有Cu和Mn,富N i原子团簇可以作为富Cu原子团簇析出时的形核区。实验还检测到富Mn原子团簇,当Mn原子团簇中含有较高的N i时,它也可以成为富Cu原子团簇析出时成核的地方。由于钢中的合金元素N i在形成富N i原子团簇后会成为富Cu原子团簇析出时成核区,因而提高N i的含量将促进富Cu原子团簇的析出,这是合金元素N i会增加压力容器钢中子辐照脆化敏感性的本质原因。  相似文献   

10.
    
We review recent theoretical and experimental work on the catalytic properties of Au clusters that contain a few atoms and are supported on an oxide surface. The clusters are mass-selected and landed slowly on the oxide surface in ultra-high vacuum. STM measurements show that the clusters do not fragment and do not damage the surface when they are deposited nor do they coarsen after deposition. Their catalytic activity changes non-monotonically with the number of atoms and is sensitive to the nature of the support and to additives (hydroxyls, water, Na, Cl) present on the surface. Binary clusters (e.g. AunSr) can be more active than unary ones. Very recent work has managed to study catalysis by such clusters under realistic pressure conditions; their performance is very different from (and sometimes better than) that of large clusters.  相似文献   

11.
    
The plastic waste issue has posed a series of formidable challenges for the ecological environment and human health. While conventional recycling strategies often lead to plastic down-cycling, the electrochemical strategy of recovering valuable monomers enables an ideal, circular plastic economy. Here a corrosion synthesized single atom Pt1/Ni(OH)2 electrocatalyst with part-per-million noble Pt loading for highly efficient and selective upcycling of polyethylene terephthalate (PET) into valuable chemicals (potassium diformate and terephthalic acid) and green hydrogen is reported. Electro-oxidation of PET hydrolysate, ethylene glycol (EG), to formate is processed with high Faraday efficiency (FE) and selectivity (>90%) at the current density close to 1000 mA cm−2 (1.444 V vs RHE). The in situ spectroscopy and density functional theory calculations provide insights into the mechanism and the understanding of the high efficiency. Remarkably, the electro-oxidation of EG at the ampere-level current density is also successfully illustrated by using a membrane-electrode assembly with high FEs to formate integrated with hydrogen production for 500 h of continuous operation. This process allows valuable chemical production at high space-time yield and is highly profitable (588–700 $ ton−1 PET), showing an industrial perspective on single-atom catalysis of electrochemical plastic upcycling.  相似文献   

12.
    
Developing highly efficient electrocatalysts with low cost is critical for the wide‐spread application of sustainable and renewable energy conversion technologies. Single‐atom catalysts (SACs) have attracted considerable attention owing to their high catalytic activity, selectivity, and stability. However, the high surface energy of the single atoms often results in an extremely low loading of metal atom catalysts with limited mass activity. In this context, densely populated SACs are more promising for practical applications due to their high active surface area and mass activity. Herein, the recent research progress of high loading (≥5 wt%) SACs for different electrocatalytic applications is summarized. An overview of various synthesis and characterization strategies of SACs is presented in this review. The influence of appropriate substrates on the preparation of high metal loading SACs is also discussed. In addition, this review provides valuable insights into the current challenges and future opportunities in the field of single‐atom catalysts.  相似文献   

13.
14.
    
Acute kidney injury (AKI) has become an increasing concern for patients due to the widespread clinical use of nephrotoxic drugs. Currently, the early diagnosis of AKI is still challenging and the available therapeutic drugs cannot meet the clinical demand. Herein, this work has investigated the key redox couple involved in AKI and develops a tailored photoacoustic (PA) imaging probe (AB-DiOH) which can reversibly respond to hypochlorite (ClO−)/glutathione (GSH) with high specificity and sensitivity. This probe enables the real-time monitoring of AKI by noninvasive PA imaging, with better detection sensitivity than the blood test. Furthermore, this probe is utilized for screening nephroprotective drugs among natural products. For the first time, astragalin is discovered to be a potential new drug for the treatment of AKI. After oral administration, astragalin can be efficiently absorbed by the animal body, alleviate kidney injury, and meanwhile induce no damage to other normal tissues. The treatment mechanism of astragalin has also been revealed to be the simultaneous inhibition of oxidative stress, ferroptosis, and cuproposis. The developed PA imaging probe and the discovered drug candidate provide a promising new tool and strategy for the early diagnosis and effective treatment of AKI.  相似文献   

15.
    
Plasmonic gold nanorods (Au NRs)–copper sulfide heterostructures have recently attracted much attention owing to the synergistically enhanced photothermal properties. However, the facile synthesis and interface tailoring of Au NRs–copper sulfide heterostructures remain a formidable challenge. In this study, the rational design and synthesis of Au NRs–Cu7S4 heterostructures via a one‐pot hydrothermal process is reported. Specifically, core–shell and dumbbell‐like Au NRs–Cu7S4 heterostructures are obtained with well‐controlled interfaces by employing the Au NRs with different aspect ratios. Both core–shell and dumbbell‐like Au NRs–Cu7S4 have proven effective as photothermal therapy agents, which offer both high photothermal stability and significant photothermal conversion efficiency up to 62%. The finite‐difference time domain simulation results confirm the coupling effect that leads to the enhanced local field as well as the optical absorption at the heterostructure interface. Importantly, these Au NRs–Cu7S4 heterostructures can be compatibly used as an 808 nm laser‐driven photothermal therapy agents for the efficient photothermal therapy of cancer cells in vitro. This study will provide new insight into the design of other noble metal–semiconductor heterostructures for a broad range of applications utilizing surface plasmon resonance enhancement phenomena.  相似文献   

16.
    
Gallium Nitride (GaN), as the representative of wide bandgap semiconductors, has great prospects in accomplishing rapid charge delivery under high-temperature environments thanks to excellent structural stability and electron mobility. However, there is still a gap in wafer-scale GaN single-crystal integrated electrodes applied in the energy storage field. Herein, Si-doped GaN nanochannel with gallium oxynitride (GaON) layer on a centimeter scale (denoted by GaN NC) is reported. The Si atoms modulate electronic redistribution to improve conductivity and drive nanochannel formation. Apart from that, the distinctive nanochannel configuration with a GaON layer provides adequate active sites and extraordinary structural stability. The GaN-based supercapacitors are assembled and deliver outstanding charge storage capabilities at 140 °C. Surprisingly, 90% retention is maintained after 50 000 cycles. This study opens the pathway toward wafer-scale GaN single-crystal integrated electrodes with self-powered characteristics that are compatible with various (opto)-electronic devices.  相似文献   

17.
Microstructure evolution of Fe-1.18%Cu binary alloy during solution and aging at 550°C was investigated under a high-resolution electron microscopy (HREM). In addition, the aging strengthening mechanism was investigated based on the precipitation strengthening theory. Results show that there were lots of Cu atom clusters in the ferrite matrix during solid solution and initial aging stage, and Cu-rich metastable Fe-Cu particles precipitate subsequently at the aging hardness peak. It is found that there were high-density dislocations and stacking fault substructure in the Cu clusters that forms the obstacle of the dislocation motion, which should be the dominant reason of strengthening in the Fe-Cu alloy.  相似文献   

18.
    
Zinc-iodine batteries (Zn-I2) are extremely attractive as the safe and cost-effective scalable energy storage system in the stationary applications. However, the inefficient redox kinetics and “shuttling effect” of iodine species result in unsatisfactory energy efficiency and short cycle life, hindering their commercialization. In this work, Ni single atoms highly dispersed on carbon fibers is designed and synthesized as iodine anchoring sites and dual catalysts for Zn-I2 batteries, and successfully inhibit the iodine species shuttling and boost dual reaction kinetics. Theoretical calculations indicate that the reinforced d-p orbital hybridization and charge interaction between Ni single-atoms and iodine species effectively enhance the confinement of iodine species. Ni single-atoms also accelerate the iodine conversion reactions with tailored bonding structure of I─I bonds and reduced energy barrier for the dual conversion of iodine species. Consequently, the high-rate performance (180 mAh g−1 at 3 A g−1), cycling stability (capacity retention of 74% after 5900 cycles) and high energy efficiency (90% at 3 A g−1) are achieved. The work provides an effective strategy for the development of iodine hosts with high catalytic activity for Zn-I2 batteries.  相似文献   

19.
    
Single-atom catalysts (SACs) exhibit remarkable catalytic activity at each metal site. However, conventionally synthesized single-atom catalysts often possess low metal loading, thereby constraining their overall catalytic performance. Here, a flame spray pyrolysis (FSP) method for the synthesis of a single-atom catalyst with a high loading capacity of up to 1.4 wt.% in practice is reported. CeZrO2 acts as a carrier and provides a large number of anchoring sites, which promotes the high-density generation of Pd, and the strong interaction between the metal and the support avoids atom aggregation. Pd-CeZrO2 series catalysts have excellent CO oxidation performance. When 0.97 wt.% Pd is added, the catalytic activity is the highest, and the temperature can be reduced to 120 °C. This work presented here demonstrates that FSP, as an inherently scalable technique, allows for elevating the single-atom loading to achieve an increase in its catalytic performance. The method presented here more options for the preparation of SACs.  相似文献   

20.
吴甜甜  高虹  刘琢艺  余峰  许荩  钟军 《材料导报》2017,31(Z2):443-448
一直以来,金属纳米材料有着非常重要的应用价值且受到广泛关注,金属团簇碰撞合并过程的研究成果对认清团簇的沉积和纳米金属膜及块体材料的形成有重要的意义。采用Johnson的嵌入原子势(Embeded atom method,EAM)模型并结合分子动力学模拟方法,模拟金原子团簇在不同的碰撞平动速度作用下的碰撞合并过程,仅给弹团簇一定大小的碰撞动能,迫使两个团簇产生相对速度并发生相互碰撞合并,研究在不同的碰撞平动速度下和不同的团簇大小下对团簇碰撞合并过程产生的影响及对碰撞合并之后新团簇的性质产生的影响。在进行模拟碰撞之前,先对团簇进行了\"退火\"处理,只模拟了同等尺度大小的两个金原子团簇之间的碰撞合并过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号