首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
利用激光熔覆技术在1Cr18Ni9Ti奥氏体不锈钢表面制得了以TiC为增强相、以FeAl 金属间化合物为基体的耐磨复合材料涂层,研究了激光熔覆。FiC/FeAl复合材料涂层在干滑动磨损条件下的耐磨性能及磨损机制。结果表明:随着载荷和滑动速率的增加,TiC/FeAl金属间化合物基复合材料涂层的磨损速率增加,其磨损机制随着载荷的增加逐渐由磨料磨损向粘着磨损转变;激光熔覆层中TiC体积分数的增加,一方面提高了涂层的磨料磨损抗力,另一方面降低了熔覆层表面与对磨材料之间的粘着倾向,提高了TiC/FeAl涂层的滑动磨损性能。激光熔覆TiC/FeAl金属间化合物基复合材料涂层具有优异的耐磨性能并随TiC体积分数的增加而提高。  相似文献   

2.
The TiC/graphene/graphite/Ti6Al4V composite coating was prepared by laser cladding.The microstructure and tribological behavior of the coating were studied.The in situ reaction between graphene and Ti occurred,and feathery TiC was formed.The feathery TiC was homogeneously distributed between α'acicular martensites which was refined with the addition of graphene.Some graphene was transformed into a11otrope graphite under the laser irradiation.The TiC hard particles and the self-lubrication of graphene/graphite improved the wear resistance of composite coating.The wear rate and friction coefficient of TiC/graphene/graphite/Ti6A14V composite coating decreased with the increase in sliding speed,a mechanical mixing layer (MML) was formed on the wear surface of the composite coating under the frictional heat,which protected the substrate and reduced the contact.Because of the self-lubricating properties of graphene/graphite,interlayer sliding occurred easily,which also effectively reduced friction.The wear rate of TiC/graphene/graphite/Ti6A14V composite coating increased with the increase in load,but the friction coefficient decreased.The plastic deformation of subsurface layer was more serious under high load,and a stable self-lubricating MML with a protective effect was formed between the wear interfaces,which reduced the friction coefficient.With the increase in load,the wear mechanism changed from abrasive and oxidation wear to delamination,fatigue and oxidation wear.  相似文献   

3.
利用Co-Ti-B4C自蔓延体系合成TiB2-TiC-Co复合陶瓷粉末,并结合大气等离子喷涂技术在Q235 钢基体表面制备TiB2-TiC-Co陶瓷涂层,研究了自蔓延产物和涂层的相组成、显微组织,以及涂层的结合强度和抗磨损性能。结果表明:Co-Ti-B4C体系自蔓延产物的物相中,除了少量剩余的NaCl添加剂衍射峰外,主要由TiB2和TiC陶瓷相的强衍射峰组成;产物断面中,两相陶瓷颗粒细小。随Co含量增加,TiB2-TiC-Co涂层表面盘状组织增多,表面逐渐平滑,截面涂层厚度均匀,组织致密性逐渐增加;结合强度和耐滑动磨损性能呈先升高后降低的变化趋势。Co含量为10wt.%时,涂层的结合强度和耐滑动磨损性能最好,涂层的滑动磨损机制主要为粘着磨损和层状剥落磨损。  相似文献   

4.
为了提高奥氏体不锈钢的耐磨性能,扩大其应用范围,以Ti-C-Fe-Ni混合合金粉末为原料,利用等离子熔敷技术在1Cr18Ni9Ti奥氏体不锈钢表面原位合成了TiC增强耐磨复合涂层。分析了涂层的显微组织结构,测试了涂层沿层深方向的硬度分布,评价了涂层在室温干滑动磨损试验条件下的摩擦磨损性能,结果表明:等离子熔敷TiC金属陶瓷增强复合涂层显微组织细小均匀,由花瓣状和少量颗粒状TiC初生相均匀分布在TiC/γ-(Fe,Ni)共晶基体上组成,涂层与不锈钢基材之间形成了完全冶金结合,涂层平均显微硬度约790 HV,涂层在室温干滑动磨损试验条件下表现出良好的耐磨性及较低的摩擦系数。  相似文献   

5.
以B4C和Ni60A粉末为预涂材料,采用氩弧熔覆技术,在Ti6Al4V合金表面原位合成TiC与TiB2增强相增强钛基复合材料涂层.运用XRD,SEM等分析手段研究了复合涂层的显微组织,利用显微硬度仪测试了复合涂层的显微硬度并用磨损试验机分析了其在室温干滑动磨损条件下的耐磨性能.结果表明,熔覆层组织主要由TiC和TiB2组成,TiC颗粒和TiB2颗粒弥散分布在基体上,TiC颗粒的尺寸为2~3μm,而呈长条状的TiB2颗粒尺寸为3~5μm.显微硬度和耐磨性测试结果表明,该复合涂层显微维氏硬度高达1200MPa左右,复合涂层的耐磨性能比Ti6Al4V基体提高约20倍.  相似文献   

6.
Titanium carbide-based coatings have been considered for use in sliding wear resistance applications. Carbides embedded in a metal matrix would improve wear properties, providing a noncontinuous ceramic surface. TiC-Fe coatings obtained by plasma spraying of spray-dried TiC-Fe composite powders containing large and angular TiC particles are not expected to be as resistant as those containing TiC particles formed upon spraying. Coatings containing 60 vol% TiC dispersed in a steel matrix deposited by plasma spraying reactive micropellets, sintered reactive micropellets, and spray-dried TiC-Fe composite powders are compared. The sliding wear resistance of these coatings against steel was measured following the test procedure recommended by the Versailles Advanced Materials and Standards (VAMAS) program, and the inherent surface porosity was evaluated by image analysis. Results show that, after a 1-km sliding distance, TiC-Fe coatings obtained after spraying sintered reactive powders exhibit scar ring three times less deep than sprayed coatings using spray-dried TiC-Fe composite powders. For all coatings considered, porosity is detrimental to wear performance, because it generally lowers the coating strength and provides cavities that favor the adhesion of metal. However, porosity can have a beneficial effect by entrapping debris, thus reducing friction. The good wear behavior of TiC-Fe coatings manufactured by plasma spraying of sintered reactive powders is related to their low coefficient of friction against steel. This is due to the microstructure of these coatings, which consists of 0.3 to 1 μm TiC rounded particles embedded in a steel matrix. Presented at the International Conference on Metallurgical Coatings and Thin Films, ICMCTF-92, Apr 6–10, 1992, San Diego.  相似文献   

7.
Titanium carbide particles reinforced Fe-based surface composite coatings were fabricated by laser cladding using a 5 kW CO2 laser. The microstructure, phase structure and wear properties were investigated by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction, as well as dry sliding wear test. The results showed that TiC carbides were formed via in situ reaction between ferrotitanium and graphite in the molten pool during the laser-clad process. The morphology of TiC is mainly cubic and dendritic form; and the TiC carbides were distributed uniformly in the composite coating. The TiC/matrix interface was found to be free from cracks and deleterious phases. The coatings reinforced by TiC particles revealed higher wear resistance and lower friction coefficient than that of the substrate and FeCrBSi laser-clad coating.  相似文献   

8.
目的提高TA2钛合金的耐磨减摩性能,并研究添加WS_2对激光熔覆Ti/TiC耐磨复合涂层的影响。方法以Ti+TiC和Ti+TiC+WS_2两种复合粉末为预置原料,采用激光熔覆技术在TA2合金表面制备出两类复合涂层,并采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、硬度计和摩擦磨损试验机,系统地分析了添加WS_2前后涂层的物相、组织、显微硬度及摩擦学性能。结果 Ti+TiC复合粉末的激光熔覆涂层的主要物相包含α-Ti和TiC,涂层的显微硬度为1162HV0.5。WS_2添加后,涂层中生成了新增强相(Ti,W)C_(1-x)及自润滑相Ti2SC和少量的TiS,涂层的显微硬度为1052.3HV0.5,约为TA2基体(180HV0.5)的5倍;此外,涂层的磨损率由未添加WS_2时的5.38×10~(-5) mm~3/(N·m)上升到15.98×10-5 mm~3/(N·m),耐磨性能有所下降但仍远低于基体(磨损率为66.63×10~(-5)mm~3/(N·m)),同时摩擦系数显著下降,由之前的0.49下降到0.34;同时,Si_3N_4对磨球磨损表面光滑,没有明显塑性变形,其磨损机理为轻微的塑性变形和粘着磨损。结论添加WS_2的复合涂层相对于基体依然具有良好的耐磨性能,同时由于新生的自润滑相Ti_2SC、TiS的润滑效果,涂层表现出良好的自润滑耐磨性能。  相似文献   

9.
SHS合成TiC粉对铁基涂层显微组织和硬度的影响   总被引:1,自引:1,他引:0  
以钛粉、石墨粉为原料通过自蔓延高温(SHS)合成TiC,通过破碎、筛分制得不同粒度的TiC.以此TiC为硬质相、以铁基合金粉为粘结相通过真空熔覆方法,制得TiC/Fe基耐磨涂层.研究了TiC不同含量、粒度对涂层的微观组织、硬度的影响,并与添加传统微米级TiC的涂层进行了比较.结果表明:当TiC粒度一定时,随着TiC含量...  相似文献   

10.
(Zr,Ti)N hard coatings were deposited on WC/TiC/Co cemented carbide by multi arc ion plating. Friction and wear behavior of the (Zr,Ti)N coatings against 40Cr hardened steel were evaluated using a ball-on-disk tribometer. The friction coefficients and wear rates were measured with varying applied loads and sliding speeds. The results showed that the friction coefficient increased with the increase of the applied load, and decreased with the increase of sliding speed. The wear rate decreased with both increasing applied load and sliding speed. The wear mechanism of the coatings at low friction loads was mild abrasive wear and flake while brittle fracture and flake at high applied loads. The wear mode of the (Zr,Ti)N coatings changed from adhesive wear and brittle fracture to mild abrasive wear as the sliding speed increased. The EGC coating which presents a graded distribution of coefficient of thermal expansion shows best wear resistant properties, in particular at high load and sliding speed conditions. Cracks, flakes and delamination fracture of the coatings were observed. The major failure mechanisms of the coatings are flaking and delamination.  相似文献   

11.
以碳粉、钛粉、硼粉和铁粉末为原料,利用氩弧熔覆技术在16Mn钢基材表面成功制备出铁基增强相复合涂层,运用XRD,SEM等分析手段研究了复合涂层的显微组织,利用显微硬度仪测试了复合涂层的显微硬度,并用磨损试验机分析了其在室温干滑动磨损条件下的耐磨性能.结果表明,复合涂层与基体界面无气孔、裂纹,呈冶金结合.复合涂层由TiB,TiC,Fe2Ti和α-Fe组成.显微硬度和耐磨性测试结果表明,该复合涂层显微维氏硬度高达1000 MPa左右.常温干滑动磨损条件下,复合涂层具有优异的耐磨性.  相似文献   

12.
The present work deals with the investigation on weight loss and coefficient of friction of TiC reinforced Al-4.5%Cu in situ metal matrix composites. Experiments were conducted using pin-on-disc apparatus against abrasive paper by varying the applied load, sliding distance, and weight percentage of TiC. The results indicated significant improvement in the mechanical properties and wear resistance of experimental composites as compared to the parent metal matrix. The percentage of porosity though increased with increasing TiC reinforcement. The variation of weight loss of composites increased linearly with increasing applied load and sliding distance, whereas decreased with increasing weight percentage of TiC reinforcement. The coefficient of friction decreased linearly with increasing applied load and TiC reinforcement. SEM micrographs of worn surfaces show a well compacted transfer layer of wear debris along with wear track over the sliding surface. Grooves, delamination, and crack propagation were also observed in all test samples. The effective depth of penetration and size of debris was seen to reduce with increasing wt.% of TiC reinforcement in metal matrix.  相似文献   

13.
利用氩弧熔覆技术在TC4合金表面制备出TiC增强的Ti基复合涂层。利用SEM、XRD和EDS分析了熔覆涂层的显微组织;利用显微硬度仪测试了复合涂层的显微硬度;利用摩擦磨损试验机测试了涂层在室温干滑动磨损条件下的耐磨性能。结果表明:氩弧熔覆涂层组织均匀致密,熔覆层与基体呈冶金结合,涂层中有大量的TiC树枝晶和条块状TiC颗粒;复合涂层明显改善了TC4合金的表面硬度,HV平均硬度可达9GPa;复合涂层室温干滑动磨损机制为磨粒磨损和轻微粘着磨损。  相似文献   

14.
Wear resistant TiC reinforced Ti–Ni–Si intermetallic composite coating with a microstructure consisting of TiC uniformly distributed in Ti2Ni3Si–NiTi–Ti2Ni multi-phase intermetallic matrix was fabricated on a substrate of TA15 titanium alloy by the laser cladding process using TiC/Ti–Ni–Si alloy powders as the precursor materials. Microstructure of the coating was characterized by optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray energy dispersive spectrometer (EDS). Dry sliding wear resistance of the laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating was evaluated at room temperature. Results indicated that the TiC/(Ti2Ni3Si–NiTi–Ti2Ni) intermetallic composite coating exhibited excellent abrasive and adhesive wear resistance.  相似文献   

15.
TiC-based composite coating using Mo as an additive has been fabricated by vacuum plasma-spraying, and then the phase composition and microstructure of TiC-Mo composite coating were investigated. Wear resistance of the TiC-Mo composite coating was comparatively studied with pure TiC coating. The experimental results showed that the microstructure of the TiC-Mo composite coating was relatively homogeneous and compact, exhibiting typical lamellar structure of plasma-sprayed coating. Orientated columnar grains of TiC can be found in the composite coating, and a (Ti, Mo)C transition phase was also observed. Due to the formation of (Ti, Mo)C transition phase, strong interface between TiC and Mo splats was obtained, which positively influenced the wear performance of the composite coating. As compared with pure TiC coating, the TiC-Mo composite coating exhibited improved wear resistance both at low and high loads. Wear mechanisms for the TiC coatings have been changed by adding Mo element.  相似文献   

16.
以沥青为前驱体制备TiC/FeCrNi反应火焰喷涂复合涂层   总被引:4,自引:0,他引:4  
以钛铁粉、CrFe粉、羰基镍粉和碳的前驱体(石油沥青)为原料,通过前驱体碳化复合技术制备了Ti-Fe-Cr-Ni-C反应喷涂复合粉末,并通过普通火焰喷涂成功地合成与沉积了TiC/FeCrNi复合涂层.采用XRD和SEM对喷涂粉末和涂层的相组成和显微结构进行了分析,同时对涂层耐磨性能进行了对比研究.研究结果表明:采用前驱体碳化复合技术制备的Ti-Fe-Cr-Ni-C反应喷涂复合粉末粒度均匀、无有害相生成;所制备的TiC/FeCrNi复合涂层由不同含量TiC颗粒分布于金属基体内部而形成的复合强化片层叠加而成,TiC颗粒呈纳米级;基体由(Fe,Cr)和Cr0.19Fe0.7Ni0.11两相组成;相同条件下,所获TiC/FeCrNi复合涂层磨损体积大约是常规火焰喷涂Ni60涂层的1/8.  相似文献   

17.
通过自蔓延高温合成结合准热等静压技术制备TiC/Fe基金属陶瓷。采用球-盘接触形式进行材料的耐磨试验。研究TiC/Fe基金属陶瓷材料微观组织和相结构,重点探讨其磨损特性。结果表明:TiC/Fe基金属陶瓷具有优良耐磨性,在干摩擦条件下,载荷为30N,磨损时间为40min,材料几乎没有质量损失,其磨损机制主要为粘着磨损、磨粒磨损和硬质相剥落。  相似文献   

18.
The multilayer coating, Ti10%-C:H/TiC/TiCN/TiN, was deposited on cemented tungsten carbide (WC-Co) substrate by an unbalanced magnetron sputtering system. Tribological characteristics of this coating were compared with the coatings of TiN, TiCN, and TiC/TiCN/TiN deposited on WC-Co substrates and the WC -Co substrate itself. The coating displayed excellent tribological properties, i.e., both low value and smooth curve of friction coefficient, and also, compared with the other tested materials, yielded the lowest wear depth when sliding against bronze under dry conditions. The coating thus protects against the high wear experienced when Ti-based coatings rub against copper alloy.  相似文献   

19.
Titanium metal matrix composite coatings (MMC) are considered to be important candidates for high wear resistance applications. Laser cladding (LC) by coaxial powder feeding is an advanced coating manufacturing process, which involves laser processing fine powders into components directly from computer aided design (CAD) model.In this study, the LC process was employed to fabricate TiC particle reinforced Ti6Al4V MMC coatings on Ti6Al4V hot rolled samples.The experimental results show that during LC process, TiC particles are partially dissolved into melted Ti-base alloy and precipitated in the form of TiC dendrites during cooling.Dry sliding wear properties of these MMC layers have been compared with substrate materials wear. The observed wear mechanisms are summarized and related to detailed microstructural observations. The layers have been found to show improved tribological properties connected with the TiCp addition and the LC process parameters.  相似文献   

20.
Thermal explosion reactions of Al-Ti-C system were studied. It was found that TiC and Al3Ti could be synthesized as final products in the Al-Ti-C system. A particular morphology variation of TiC occurred with an increase of TiC content. TiC presented a strip form as the content of TiC was 20 wt.%; with an increase of TiC, its shape changed to a granular form with a reduced size. A TiC-reinforced Al3Ti intermetallic matrix composite coating was successfully fabricated on an iron substrate by the thermal explosion of Al-Ti-C system during casting. As the contents of TiC reached 20-40 wt.%, the reactions of Al-Ti-C system were ignited and fully completed by molten iron to achieve a compacted coating with a good metallurgical bonding between the coating and basal iron. The elements of Al, Ti, C, and Fe gradiently distributed from the coating to the matrix. The hardness of the coating was substantially higher than that of the matrix and slightly increased with an increase of TiC content. The composite coating presented relatively lower wear rates than H13 steel at 25-400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号