首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present a robust target tracking algorithm for a mobile robot. It is assumed that a mobile robot carries a sensor with a fan-shaped field of view and finite sensing range. The goal of the proposed tracking algorithm is to minimize the probability of losing a target. If the distribution of the next position of a moving target is available as a Gaussian distribution from a motion prediction algorithm, the proposed algorithm can guarantee the tracking success probability. In addition, the proposed method minimizes the moving distance of the mobile robot based on the chosen bound on the tracking success probability. While the considered problem is a non-convex optimization problem, we derive a closed-form solution when the heading is fixed and develop a real-time algorithm for solving the considered target tracking problem. We also present a robust target tracking algorithm for aerial robots in 3D. The performance of the proposed method is evaluated extensively in simulation. The proposed algorithm has been successful applied in field experiments using Pioneer mobile robot with a Microsoft Kinect sensor for following a pedestrian.  相似文献   

2.
This paper represents the development of feature following control and distributed navigation algorithms for visual surveillance using a small unmanned aerial vehicle equipped with a low-cost imaging sensor unit. An efficient map-based feature generation and following control algorithm is developed to make an onboard imaging sensor to track a target. An efficient navigation system is also designed for real-time position and velocity estimates of the unmanned aircraft, which is used as inputs for the path following controller. The performance of the proposed autonomous path following capability with a stabilized gimbaled camera onboard a small unmanned aerial robot is demonstrated through flight tests with application to target tracking for real-time visual surveillance.  相似文献   

3.
Autonomous aerial robots provide new possibilities to study the habitats and behaviors of endangered species through the efficient gathering of location information at temporal and spatial granularities not possible with traditional manual survey methods. We present a novel autonomous aerial vehicle system—TrackerBots—to track and localize multiple radio‐tagged animals. The simplicity of measuring the received signal strength indicator (RSSI) values of very high frequency (VHF) radio‐collars commonly used in the field is exploited to realize a low‐cost and lightweight tracking platform suitable for integration with unmanned aerial vehicles (UAVs). Due to uncertainty and the nonlinearity of the system based on RSSI measurements, our tracking and planning approaches integrate a particle filter for tracking and localizing and a partially observable Markov decision process for dynamic path planning. This approach allows autonomous navigation of a UAV in a direction of maximum information gain to locate multiple mobile animals and reduce exploration time and, consequently, conserve on‐board battery power. We also employ the concept of search termination criteria to maximize the number of located animals within power constraints of the aerial system. We validated our real‐time and online approach through both extensive simulations and field experiments with five VHF radio‐tags on a grassland plain.  相似文献   

4.
针对欠驱动移动机器人的多目标点跟踪问题,提出了一种基于粒子滤波的高精度跟踪控制方法;具体地,在考虑移动机器人采样噪声的情况下,首先利用粒子滤波对移动机器人的位置信息进行处理,得到精准可靠的移动机器人状态信息;在此基础上,根据欠驱动移动机器人的运动学模型以及目标点的分布状况,设计基于反馈控制的多目标点跟踪控制方法;相对于传统的欠驱动移动机器人目标点跟踪控制算法,改进了该控制方法中增益参数的约束条件,有效避免了移动机器人在接近目标点时产生的奇异现象,有效提高了移动机器人对目标点的跟踪精度;此外,分析了该目标点跟踪控制系统的稳定性,并通过数值仿真验证了所提方法的可行性与有效性.  相似文献   

5.
孙训红  都海波  陈维乐  俞波 《控制与决策》2023,38(10):2875-2880
研究面向移动目标的移动机器人机载视觉云台跟踪控制系统.首先,对视觉云台跟踪控制系统进行数学建模;然后,为提高移动目标的跟踪快速性和精度,基于有限时间控制技术提出一种新的有限时间视觉跟踪控制算法.严格的理论分析证明即使系统存在外部干扰也可以在有限时间内跟踪上目标,即通过控制云台转动能够保持在机器人运动过程中移动目标始终在相机视觉中心.仿真结果表明,所提出的有限时间控制算法可以实现移动目标的有限时间跟踪.  相似文献   

6.
High-quality acceleration signal plays a significant role in fast and precise trajectory tracking of robot manipulators via time delay control (TDC). This paper proposes a fast transient tracking differentiator (FTD) for obtaining the noise-less time derivative from a noisy measurement within the framework of tracking differentiator (TD) design methodology. Global asymptotic convergence of the proposed FTD is proven by Lyapunov's direct method and TD theory. The proposed FTD is cascaded to construct an acceleration estimation and is integrated with the commonly used TDC for an improved trajectory tracking of robot manipulators in the presences of parametric uncertainties and bounded disturbances. Numerical simulations and real-time experimental validation comparisons demonstrate that the proposed approach provides an easy-going model-free improved design for fast and accurate trajectory tracking of robot manipulators with position measurement only.  相似文献   

7.
There is a great challenge that a mobile robot reliably and continuously tracks a specific person in indoor environments. In this paper, a novel method is presented, which can effectively recognize and reliably track a target person based on mobile robot vision. Gabor wavelet and hidden Markov model (HMM) are firstly employed for identifying the target person. In order to effectively track the specific person and reduce the computational cost in tracking stage, horizontal-projecting probability histogram (HPPH) of upper body color clothes region is proposed for extracting the pattern features, which significantly improves the tracking reliability and, at the same time, unscented particle filter (UPF) is integrated and PID operator is introduced for controlling the robot to follow the person. Experimental results validate the robustness and the reliability of this approach.  相似文献   

8.
针对安装有惯性测量单元和摄像机的低成本四旋翼无人机,研究无位置、速度、航向测量情况下的机动目标基于图像的跟踪控制方法.首先,结合无人机的动力学方程在图像空间中推导了系统的误差方程.其次,为克服无航向测量的问题,设计了一种位置控制器,使用图像矩作为反馈输入并输出油门和姿态指令.最后,针对缺少图像速度测量问题,设计了一种super-twisting滑模观测器和控制器,生成的期望姿态和拉力指令无颤振,并通过李雅普诺夫理论证明了控制系统的稳定性.最终无人机通过调整倾斜姿态实现了跟踪飞行,且避免了响应慢的航向调整.跟踪机动目标的仿真结果验证了所提出方法的有效性.  相似文献   

9.
Robust user detection and tracking is one of the key issues for a personal robot to follow the target person. In this paper, a novel tracking system using an omnidirectional camera and IR LED tags is proposed. The users wear the tags on their ankles, and the tags emit a light pattern as its ID. The camera on the robot is used to detect and track their positions individually. A novel approach based on a track-before-detect particle filter is proposed. It detects and tracks the tags simultaneously, even if the tags are not synchronized with the camera sampling or are not fully observable. The effectiveness of the proposed system is evaluated by experiments using a prototype personal robot.  相似文献   

10.
动态背景下基于粒子滤波的运动目标跟踪方法   总被引:2,自引:0,他引:2  
在智能视频监控系统中,实现对动态背景下的运动目标准确跟踪是一个难点问题。使用一种基于粒子滤波的方法来对动态背景下的运动目标进行跟踪。该方法基于贝叶斯估计,利用粒子集来表示概率,通过递推的贝叶斯滤波来近似逼近最优化的估计结果。实验结果证明,该方法可准确跟踪动态背景下的运动目标,是一种有效的目标跟踪方法。  相似文献   

11.
An optical guiding system is modeled and the signal processing and its operation are studied. Our model is based on the principle that two moving objects are considered, in which one is the moving robot, and the other one is the sought object. The reported system is capable of detecting and measuring the relative motion of the target, and, in response generating electrical signal capable of directing and guiding the vehicle on the shop floor. In this way, the respected robot or vehicle using such a device can maintain its aim on the related target scene at all times. The proposed system offers a higher degree of accuracy and reliability since it considers the state-of-art electronic and optical components for signal processing. A software package (ORCAD 9) is used to simulate signal processing of such an optical tracking system and the results are reported.  相似文献   

12.
In this paper, we study the problem of dynamically positioning a team of mobile robots for target tracking. We treat the coordination of mobile robots for target tracking as a joint team optimization to minimize uncertainty in target state estimates over a fixed horizon. The optimization is inherently a function of both the positioning of robots in continuous space and the assignment of robots to targets in discrete space. Thus, the robot team must make decisions over discrete and continuous variables. In contrast to methods that decouple target assignments and robot positioning, our approach avoids the strong assumption that a robot's utility for observing a target is independent of other robots’ observations. We formulate the optimization as a mixed integer nonlinear program and apply integer relaxation to develop an approximate solution in decentralized form. We demonstrate our coordinated multirobot tracking algorithm both in simulation and using a pair of mobile robotic sensor platforms to track moving pedestrians. Our results show that coupling target assignment and robot positioning realizes coordinated behaviors that are not possible with decoupled methods.  相似文献   

13.
We propose a framework for utilizing fixed ultra-wideband ranging radio nodes to track a moving target radio node in an environment without guaranteed line of sight or accurate odometry. For the case where the fixed nodes’ locations are known, we derive a Bayesian room-level tracking method that takes advantage of the structural characteristics of the environment to ensure robustness to noise. For the case of unknown fixed node locations, we present a two-step approach that first reconstructs the target node’s path using Gaussian Process Latent Variable models (GPLVMs) and then uses that path to determine the locations of the fixed nodes. We present experiments verifying our algorithm in an office environment, and we compare our results to those generated by online and batch SLAM methods, as well as odometry mapping. Our algorithm is successful at tracking a moving target node without odometry and mapping the locations of fixed nodes using radio ranging data that are both noisy and intermittent.  相似文献   

14.
针对通信延时情况下双无人机协同跟踪地面移动目标问题进行研究, 构建了基于分布式遗传算法和滚动时域优化结合的目标跟踪航迹规划算法模型。考虑到通信延时会增加目标状态信息数据融合时的误差, 导致无人机跟踪任务效果变差, 结合递推最小二乘滤波和加权最小二乘估计设计了融合方法, 来融合处理目标状态信息; 考虑到无人机对目标的观测效果与未来时刻的目标状态信息密切相关, 采用递推最小二乘滤波预测目标的状态信息, 结合分布式遗传算法和滚动时域优化设计了双无人机目标跟踪航迹规划算法。适应度函数考虑了无人机和目标之间的距离、无人机之间的通信距离、无人机之间的通信角度。仿真结果表明:该协同跟踪方法能够较好地完成跟踪任务; 与一架无人机跟踪相比误差明显减小, 并且可以减小通信延时带来的跟踪误差。  相似文献   

15.
为了能够快速和准确地跟踪运动目标,提出了一种改进的基于Camshift的粒子滤波算法。在粒子滤波框架下,首先对传统目标模型进行改进,提出一种新的融合目标颜色信息和运动信息的模型,以增强目标跟踪的稳健性和准确性;同时为了提高跟踪的效率,将一种改进的Camshift算法嵌入到粒子滤波中,用来重新分配随机粒子样本,使之向目标状态的最大后验概率密度方向移动。实验结果表明,与传统的粒子滤波算法或Camshift算法相比,该方法能有效处理目标快速运动或背景存在强干扰等情况,实现对目标快速和稳健的跟踪。  相似文献   

16.
A virtual target tracking approach is proposed for kinematic control of mobile robot. In the controller, linear and angular velocity inputs are generated by using the local data of robot position and orientation along with the estimated velocity of target object. Applying the proposed approach to a cooperative robot group with arbitrary number of multiple mobile robots, it is possible to create various robot formations for cooperative navigation and tracking of moving object. The developed controller is shown to be stable and convergent through theoretical proof and a series of experiments.  相似文献   

17.
动态目标检测与目标跟踪是图像领域的热点研究问题,为研究其在移动机器人领域的应用价值,设计了六足机器人动态目标检测与跟踪系统。针对非刚体运动目标容易被检测为多个分散区域的问题提出区域合并算法,并通过对称匹配、自适应外点滤除对运动背景进行精确补偿,最终基于背景补偿法实现对运动目标的精确检测。研究了基于KCF(Kernel Correlation Filter)的目标跟踪算法在六足机器人平台上的应用,设计了自适应跟踪算法实现六足机器人对运动目标的角度跟踪。将运动目标检测及跟踪算法应用于六足机器人系统。实验表明,在六足机器人移动过程中,系统可对运动目标进行精确检测与跟踪。  相似文献   

18.
冯晓敏  郭继昌  张艳 《计算机应用》2011,31(9):2493-2496
针对由于复杂背景的干扰而导致不能准确跟踪感兴趣运动目标的问题,提出一种基于多特征自适应融合的粒子滤波跟踪算法。首先在HSV颜色空间中得到感兴趣运动目标的加权颜色分布模型,然后利用不变矩特征来消除背景中相似颜色物体和光照变化的干扰,两种特征通过自适应调整权重来更新粒子权值而融合于粒子滤波算法中,从而能够准确和稳定地跟踪运动目标。实验证明,该算法在运动目标平移、姿态变化、遮挡、光照变化及相似颜色干扰等复杂背景下都能够准确地进行跟踪,对背景干扰具有很强的鲁棒性。  相似文献   

19.
针对低信噪比环境下微弱目标的实时检测与跟踪,提出一种基于粒子滤波的检测前跟踪改进算法.该算法在粒子滤波的基础上融合不敏卡尔曼滤波(uKF1)算法,融合后的新算法在利用重要性密度函数产生粒子时充分考虑当前时刻的量测,从而引导粒子向高似然区域移动,使得粒子的分布更接近状态的后验概率分布.仿真实验表明,改进算法的检测与跟踪性能优于标准的粒子滤波算法.  相似文献   

20.
Aerial manipulators are composed of a robotic arm installed on an unmanned aerial vehicle and are used in several applications because of their inherent ability in performing complex tasks. In real-world applications, these systems are required to be robust against exogenous disturbances, such as wind, to guarantee the desired level of accuracy in the execution of the tasks. In this paper, the reference scenario consists of an aerial manipulator with a camera mounted on the end-effector of the robotic arm, and the goal is to track a fast-moving target. A control system architecture able to assure that the tracking error remains bounded even in the presence of external disturbances is illustrated. The proposed approach is based on the compensation of the dynamic coupling between the robotic arm and the unmanned aerial vehicle. Stability is analytically proved, and the effectiveness of the proposed control solution is shown with some simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号