首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionally graded cellular structures such as bio-inspired functionally graded materials for manufacturing implants or bone replacement, are a class of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. A gradual increase in cell size distribution, can impart many improved properties which may not be achieved by having a uniform cellular structure.The material properties of functionally graded cellular structures as a function of density gradient have not been previously addressed within the literature. In this study, the finite element method is used to investigate the compressive uniaxial and biaxial behavior of functionally graded Voronoi structures. Furthermore, the effect of missing cell walls on its overall mechanical (elastic, plastic, and creep) properties is investigated.The finite element analysis showed that the overall effective elastic modulus and yield strength of structures increased by increasing the density gradient. However, the overall elastic modulus of functionally graded structures was more sensitive to density gradient than the overall yield strength. The study also showed that the functionally graded structures with different density gradient had similar sensitivity to random missing cell walls. Creep analysis suggested that the structures with higher density gradient had lower steady-state creep rate compared to that of structures with lower density gradient.  相似文献   

2.
竹质工程材料的制造方法与性能   总被引:4,自引:0,他引:4       下载免费PDF全文
竹质工程材料是利用性能优良、可迅速再生的竹子为原料制造而成。主要的产品有: 竹集成材、竹层积材和分级竹丝复合材料。在竹子生长、采集、加工、制造、使用和产品的废弃过程中, 消耗能源少, 无污染, 是一种高性能的环保材料。与其它工程材料相比较, 其最大的不足在于材料的均齐性。需要采用多种方法提高材料的均齐性, 包括竹材的分级、规则化的加工、浸胶、定向预压、铺层组坯等工艺技术, 以及采用规范的质量控制和检验方法, 才能制造出符合要求的工程材料。其物理和力学性能良好, 可广泛用于风轮叶片、船舶等领域。   相似文献   

3.
Porous materials with low stiffness and high strength are sought as implant materials to prevent stress shielding and fracture during in vivo use. This study proposes a powder metallurgy-based space holder technique to fabricate porous titanium with mechanical performance suitable for implant materials. Mixed powders of titanium and sodium chloride were sintered at low temperature using spark plasma sintering, and then the sodium chloride was dissolved in water. As a result, uniform porous titanium (UP-Ti) with a wide range of microstructures: porosity from 26% to 80% and average pore size from 75 μm to 475 μm was successfully fabricated. Also, functionally graded porous titanium (FGP-Ti) was successfully fabricated, in which porous titanium with high porosity and dense titanium were placed at the inside and surface, respectively. The stiffness of UP-Ti was comparable to that of natural bones, but its strength was lower than that of natural bones, which would be insufficient for use as an implant. In contrast, the mechanical performance of FGP-Ti was improved, compared with UP-Ti with the porosity comparable to the average porosity of FGP-Ti: its strength was higher than that of natural bones and its stiffness was comparable to that of natural bones. These results imply that porous titanium, especially functionally graded porous titanium, is a candidate metal for implants used to replace heavily loaded natural bone.  相似文献   

4.
用竹炭和硅藻土为原料制备含炭建筑材料   总被引:4,自引:0,他引:4  
采用竹炭、硅藻土和粘土为原料,通过干压成型-高温烧成法制备出一种用于内墙装饰的含炭建筑材料,分析了竹炭/硅藻土质量比及烧成温度对含炭建筑材料的物化性能、物相组成及显微结构的影响规律。研究结果表明,竹炭、硅藻土和粘土三种原料复合可以制备较高气孔率、较高强度的含炭建筑材料,其物相主要为石英相与莫来石相,呈现规则孔道结构;在竹炭/硅藻土质量比为15/60,烧成温度为1150℃时,含炭建筑材料具有较好的综合性能,其破坏强度可达459.7N,吸水率10.55%,显气孔率18.4%,达到国标GB/T 4100-2006附录L中对BⅢ类陶质砖的性能要求,而且该材料的比表面积达到34.86m2/g,远红外辐射率达到0.904,具备远红外及吸附等功能,有望成为一种新型的室内功能装饰材料。  相似文献   

5.
Bone TE uses a scaffold either to induce bone formation from surrounding tissue or to act as a carrier or template for implanted bone cells or other agents. We prepared different bone tissue constructs based on collagen, gelatin and hydroxyapatite using genipin as cross-linking agent. The fabricated construct did not present a release neither of collagen neither of genipin over its toxic level in the surrounding aqueous environment. Each scaffold has been mechanically characterized with compression, swelling and creep tests, and their respective viscoelastic mechanical models were derived. Mechanical characterization showed a practically elastic behavior of all samples and that compressive elastic modulus basically increases as content of HA increases, and it is strongly dependent on porosity and water content.Moreover, by considering that gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues, we developed discrete functionally graded scaffolds (discrete FGSs) in order to mimic the graded structure of bone tissue.These new structures were mechanically characterized showing a marked anisotropy as the native bone tissue. Results obtained have shown FGSs could represent valid bone substitutes.  相似文献   

6.
王刚锋  亢一澜 《工程力学》2002,19(1):103-108
作为一类先进的复合材料,功能梯度材料(FGM)能综合利用多种材料的物理性能,同时材料性质的连续变化也使其具有许多优越的力学性能。本文对功能梯度材料中平行于界面的裂纹的断裂参数进行了计算,并分析了梯度变化的薄膜在压应力作用下的屈曲驱动扩展。研究结果表明:功能梯度材料能有效地减小界面中的应力集中及它对材料中缺陷的作用,从而不同程度地提高了材料的强度和韧性。  相似文献   

7.
自然界中生物材料表现出的力学性能与其结构设计形式紧密相关。柔性生物材料多为多级结构设计,其独特的功能梯度特征使其具备优异的变形能力及良好的断裂韧性。本文借鉴工程结构设计基本单元的思想提出柔性结构仿生元素理念,根据几何形态将结构仿生元素分为:线元素、梁元素、柱元素、板壳元素、薄膜元素及组合元素。根据系统论的观点建立仿生柔性结构设计体系,归纳总结出柔性仿生结构的设计准则,并基于鱼鳞梯度结构设计新型仿生功能梯度板。通过有限元的方法对功能梯度板归一化自然频率进行分析。结果表明,类鱼鳞功能梯度板具有柔韧性及刚度软化特性。阐述了仿生柔性结构的设计方法,包括模仿设计、组合设计及选择匹配设计。  相似文献   

8.
二维多孔材料散热性能分析与设计   总被引:2,自引:2,他引:0       下载免费PDF全文
二维多孔材料存在一个易于流动的方向并具有较大的面密度 , 因此在具有良好的比刚度和比强度的同时也具有良好的散热性能 , 研究强迫对流下的散热性能对其多功能化设计具有重要意义。本文中利用数值方法求解考虑二维多孔材料内部流体流动规律、 热传导和对流换热影响的流固耦合热传输问题 , 分析了多孔率和微结构尺寸对散热性能的影响并进行了最优参数设计 ; 通过分析比较 5种具有典型微结构形式的二维多孔材料的散热性能 , 给出了微结构形式对散热性能的影响。提出了以需要满足的散热性能为约束条件 , 以满足需求的设计参数的可调范围(设计参数的允许变化范围)为设计目标的最优散热结构设计理念。以此理念得到的设计结果 , 更有利于根据其他性能的要求对材料进行多功能化设计。分析表明 , 具有正六边形微结构的二维多孔材料的散热性能最优 , 并有利于实现轻质多功能化设计。  相似文献   

9.
刘玮  闫铂 《振动与冲击》2007,26(5):1-3,7
考虑一功能梯度薄板,其上下表面嵌有压电执行元件。根据逆压电效应,将电场强度转换成作用于板上的等效电载荷。假设梯度材料的物性参数为板厚度方向坐标的幂函数,应用达朗贝尔原理,导出了具有压电元件的功能梯度弹性薄板的动力学方程。采用变量分离与Navier解,得到四边简支功能梯度板的固有特性与电场强度间的关系。并进一步通过数值例子讨论了电场强度、材料的梯度指数等对板固有特性的影响。研究结果表明,调整作用于执行元件上的电场强度可以实现对板的振动特性的控制,而材料的梯度化可影响板的固有频率,在设计中应予以考虑。  相似文献   

10.
竹子是一种以竹纤维为增强体、多孔木质素为基体而组成的天然复合材料.本文借鉴竹子的结构特征,采用高性能热塑性聚合物浸没沉淀相转化法在玻璃纤维(GF)表面沉积梯度孔径分布的多孔聚醚砜(PES)基体,制备仿竹结构单丝玻璃纤维增强多孔聚醚砜基复合材料(GF/PES),并对其微观形貌、拉伸力学性能和“温度-模量”智能响应性进行了...  相似文献   

11.
Natural structural materials, such as bone, can autonomously modulate their mechanical properties in response to external loading to prevent failure. These material systems smartly control the addition/removal of material in locations of high/low mechanical stress by utilizing local resources guided by biological signals. On the contrary, synthetic structural materials have unchanging mechanical properties limiting their mechanical performance and service life. Inspired by the mineralization process of bone, a material system that adapts its mechanical properties in response to external mechanical loading is reported. It is found that charges from piezoelectric scaffolds can induce mineralization from surrounding media. It is shown that the material system can adapt to external mechanical loading by inducing mineral deposition in proportion to the magnitude of the stress and the resulting piezoelectric charges. Moreover, the mineralization mechanism allows a simple one-step route for fabricating functionally graded materials by controlling the stress distribution along the scaffold. The findings can pave the way for a new class of self-regenerating materials that reinforce regions of high stress or induce deposition of minerals on the damaged areas from the increase in mechanical stress to prevent/mitigate failure. It is envisioned that the findings can contribute to addressing the current challenges of synthetic materials for load-bearing applications from self-adaptive capabilities.  相似文献   

12.
采用无压烧结工艺制备了Y2O3体积含量梯度变化的W-Y2O3复合材料, 分析了复合材料的物相和组织, 并通过对各复合材料力学性能的测试和断口形貌的观察, 探讨了W-Y2O3复合材料的断裂机理。采用有限元模拟W-Y2O3梯度材料制备过程中的应力场, 分析了W-Y2O3梯度材料各梯度层成分含量和结构设计的可行性, 并成功制备了W-Y2O3梯度材料。结果表明: W-Y2O3复合材料中, 随着Y2O3含量的逐渐增加, 材料的力学性能逐渐降低, 该现象是组成相的固有强度、气孔率和晶粒尺寸等因素共同作用的结果。该成分分布和梯度结构的设计可制备界面结合良好且内部无热裂纹缺陷的W-Y2O3梯度材料。  相似文献   

13.
14.
Additive manufacturing enables processing of functionally graded materials (FGMs) with flexible spatial design and high bonding strength.A steel-copper FGM with high interfacial strength was developed using laser powder bed fusion (LPBF).The effect of laser process parameters on interfacial defects was evaluated by X-ray tomography,which indicates a low porosity level of 0.042 % therein.Gradient/fine dendritic grains in the interface are incited by high cooling rates,which facilitates interface strengthening.Multiple mechanical tests evaluate the bonding reliability of interface;and the fatigue tests further substantiate the ultrahigh bonding strength in FGMs,which is superior to traditional manufacturing methods.Mechanisms of the high interfacial bond strength were also discussed.  相似文献   

15.
采用响应曲面设计(Box-Behnken设计)优化竹纤维的提取工艺。以碱和脂肪醇聚氧乙烯醚(JFC)渗透剂对竹片进行沸煮,并结合机械碾压提取竹黄纤维,以碱浓度为0.5%~0.7%、JFC浓度为0.1%~0.3%、沸煮时间为1.5~2.5 h为考察因素,采用响应曲面法,以竹纤维断裂强度、提取率、直径和摩擦系数为响应值,建立数学模型,获得综合性能最佳工艺。并采用扫描电镜观察不同工艺处理的竹纤维的纵向结构。结果表明:最优提取工艺为碱浓度为0.7%、JFC浓度为0.3%、沸煮时间为2.5 h,此时纤维的综合性能最佳,拉伸断裂强度为386.25 MPa,直径为191.79 μm,摩擦系数为0.206,与响应曲面预测值(断裂强度为405.08 MPa,直径为175.59 μm,摩擦系数为0.191)接近。响应曲面法优化得到的竹纤维性能较好,并能很好地预测试验结果,断裂强度与预测值偏差4.6%,摩擦系数与预测值偏差7.8%,直径与预测值偏差9.2%。SEM表明:碱处理、JFC处理和沸煮时间对纤维表面的胶质有影响,碱浓度为0.5%、JFC浓度为0.3%、沸煮时间为2.5 h时有利于竹纤维表面胶质的去除。  相似文献   

16.
In this work, a novel processing routine for the fabrication of graded metal/intermetallic materials is shown. It is a combined process that begins with “layer by layer” manufacturing of the 3-D components from the elemental metal powders under computer-aided design and manufacturing (CAD/CAM), followed by low-temperature uniaxial pressing under cycle loading and subsequent sintering at high temperature. The ability to fabricate heterogeneous metal-intermetallic materials with a continuous and/or discrete intermetallic gradient was demonstrated by producing graded Fe/FeAl materials as an example. The microstructure of the graded Fe/FeAl materials was investigated with X-ray diffractometer (XRD) and scanning electron microscope (SEM) coupled with a backscattered electron detector (BSE) and an energy dispersive spectrometer (EDS). In both of the investigated materials, Fe and FeAl intermetallic compounds with different amounts of Al and aluminum oxides were found. The mechanical properties of the graded Fe/FeAl materials were examined with a static compression test. The Fe/FeAl material with a continuous gradient exhibited higher compression strength than the material with a discrete gradient.  相似文献   

17.
FeCrAl纤维多孔材料梯度结构吸声性能的研究   总被引:1,自引:0,他引:1  
根据前期对单层FeCrAl纤维多孔材料吸声性能的系统研究,对纤维多孔结构进行了优化设计,梯度结构是以孔隙度递减的方式排列而成.分别对单层和梯度结构的吸声性能进行了测试,结果表明,在常温常声压条件下,3层梯度结构低频吸声性能较单层材料有明显提高,而且能够在一个较宽频率范围内的稳态吸声系数平稳延伸,最大值为1;在常温高声强140dB条件下,该结构仍保持较好的稳态吸声性能,在1600~6400Hz宽频范围内的吸声系数均达到0.9以上;在高温常声压条件下,梯度结构的吸声性能受到温度影响有所下降,且吸声系数不随频率的升高而增加,从而在测试频率范围内出现第一峰值频率.虽然梯度结构的高温吸声性能变差,但是较单层材料的吸声性能要好得多.因此,FeCrAl纤维多孔材料梯度结构是一种适用于多种特殊环境的吸声体.  相似文献   

18.
The capacity of lithium ion batteries can be improved through the use of functionally graded electrodes. Here, we present a computational framework for optimizing the layout of electrodes using a multiscale lithium ion battery cell model. The model accounts for nonlinear transient transport processes and mechanical deformations at multiple scales. A key component of the optimization methodology is the formulation of the adjoint sensitivity equations of the multiscale battery model. The efficient solution of the adjoint equations relies on the decomposition of the multiscale problem into multiple, computationally small problems associated with the individual realizations of the microscale model. This decomposition method is shown to significantly reduce the computational time needed for sensitivity analysis versus numerical finite differencing. The potential of the proposed optimization framework is illustrated with numerical problems involving both macroscale and microscale performance criteria and design variables. The usable capacity of a lithium ion battery cell is maximized while limiting the stress level in the electrode particles through manipulation of the local porosities and particle radii. The optimization results suggest that optimal functionally graded electrodes improve the performance of a battery cell over using uniform porosity and particle radius distributions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Shell‐core cellular composites are a unique class of cellular materials, where the base constituent is made of a composite material such that the best distinctive physical and/or mechanical properties of each phase of the composite are employed. In this work, the authors demonstrate the additive manufacturing of a nature inspired cellular three‐dimensional (3D), periodic, co‐continuous, and complex composite materials made of a hard‐shell and soft‐core system. The architecture of these composites is based on the Schoen's single Gyroidal triply periodic minimal surface. Results of mechanical testing show the possibility of having a wide range of mechanical properties by tuning the composition, volume fraction of core, shell thickness, and internal architecture of the cellular composites. Moreover, a change in deformation and failure mechanism is observed when employing a shell‐core composite system, as compared to the pure stiff polymeric standalone cellular material. This shell‐core configuration and Gyroidal topology allowed for accessing toughness values that are not realized by the constituent materials independently, showing the suitability of this cellular composite for mechanical energy absorption applications.
  相似文献   

20.
何强  马大为  张震东  姚琳 《工程力学》2016,33(2):172-178
根据功能梯度特性的概念,建立了具有递变屈服强度梯度特性的圆形蜂窝结构数值仿真模型。在此模型的基础上详细讨论了递变屈服强度梯度和冲击速度对圆形蜂窝材料面内冲击性能的影响。研究结果表明递变梯度值对蜂窝结构的变形模式有较大影响。通过合理地选择蜂窝结构的递变屈服强度梯度值,进入被保护结构的应力值明显降低,蜂窝材料的能量吸收能力也得到有效控制。该结果能为完善屈服强度梯度蜂窝材料的研究和设计提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号