共查询到20条相似文献,搜索用时 15 毫秒
1.
Fei Wang;Jing Ma;Dawei Duan;Xiao Liang;Kang Zhou;Yonggui Sun;Taomiao Wang;Guo Yang;Guoxian Pei;Haoran Lin;Yumeng Shi;Quanyao Zhu;Gang Li;Hanlin Hu; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(20):2307679
Ionic liquids (ILs) have emerged as versatile tools for interfacial engineering in perovskite photovoltaics. Their multifaceted application targets defect mitigation at SnO2-perovskite interfaces, finely tuning energy level alignment, and enhancing charge transport, meanwhile suppressing non-radiative recombination. However, the diverse chemical structures of ILs present challenges in selecting suitable candidates for effective interfacial modification. This study adopted a systematic approach, manipulating IL chemical structures. Three ILs with distinct anions are introduced to modify perovskite/SnO2 interfaces to elevate the photovoltaic capabilities of perovskite devices. Specifically, ILs with different anions exhibited varied chemical interactions, leading to notable passivation effects, as confirmed by Density Functional Theory (DFT) calculation. A detailed analysis is also conducted on the relationship between the ILs' structure and regulation of energy level arrangement, work function, perovskite crystallization, interface stress, charge transfer, and device performance. By optimizing IL chemical structures and exploiting their multifunctional interface modification properties, the champion device achieved a PCE of 24.52% with attentional long-term stability. The study establishes a holistic link between IL structures and device performance, thereby promoting wider application of ILs in perovskite-based technologies. 相似文献
2.
Huan Zhao Shaomin Yang Yu Han Shihao Yuan Hong Jiang Chenyang Duan Zhike Liu Shengzhong Liu 《Advanced Materials Technologies》2019,4(9)
Inorganic cesium lead halide perovskite solar cells (PSCs), such as CsPbI2Br, have made a striking breakthrough with a power conversion efficiency of over 16%. However, CsPbI2Br is known to be very sensitive to moisture, and the intrinsic long‐term stability of CsPbI2Br film remains a critical challenge. Interface engineering has been proven to be an effective way for solving the instability‐to‐moisture issue and enhancing the performance of inorganic–organic hybrid PSCs, while there are a few reports on interface engineering for inorganic PSCs. Here, a conjugated polymer, poly(N‐alkyldiketopyrrolo‐pyrrole dithienylthieno[3,2‐b]thio‐phene) (DPP‐DTT), with high mobility is introduced as a novel interface passivation for CsPbI2Br PSCs, which can significantly reduce nonradiative recombination in perovskite, leading to significant enhancement in both efficiency and stability of CsPbI2Br PSCs. Through DPP‐DTT passivation, a champion efficiency of 15.14% is obtained in CsPbI2Br PSCs. Moreover, the Lewis base DPP‐DTT can serve as an ultrahydrophobic agent to hold the photovoltaic performance of CsPbI2Br PSCs under ambient environment with humidity or thermal stress. These results provide a simple while highly effective route of fabricating the highly efficient and stable inorganic PSCs. 相似文献
3.
Murat Ebic;Faranak Sadegh;Muhammad Ans;Daniel Prochowicz;Pankaj Yadav;Soumitra Satapathi;Seckin Akin; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(44):2404190
This study delves into the innovative approach of enhancing the efficiency and stability of all-inorganic perovskite solar cells (I-PSCs) through the strategic incorporation of thiocyanate (SCN−) ions via pseudohalide-based ionic liquid (IL) configurations. This straightforward methodology has exhibited captivating advancements in the kinetics of crystallization as well as the optoelectronic characteristics of the resulting perovskite films. These developments hold the promise of enhancing not only the quality and uniformity of the films but also aspects such as band alignment and the efficacy of charge transfer mechanisms. Calculation results corroborate that the incorporation of 1-butyl-3-methylimidazolium thiocyanate (BmimSCN) led to a significant redistribution of electron state density and enhanced electron-donating properties, indicating a substantial electron transfer between the perovskite material and the IL. Notably, the engineered devices demonstrate a remarkable efficiency surpassing 15%, a substantial enhancement attributed to the synergistic effects of the SCN− ion. Additionally, this approach offers inherent stability benefits, thereby addressing a significant challenge in I-PSC technology. This IL maintains >90% of the initial efficiency after 600 h, while the control device decreased to <20% of its initial value after only 100 h. 1-butyl-3-methylimidazolium iodide (BmimI) is also employed to further investigate the effects of SCN− ions on device performance. 相似文献
4.
Yi Zhang Zhaofu Fei Peng Gao Yonghui Lee Farzaneh Fadaei Tirani Rosario Scopelliti Yaqing Feng Paul J. Dyson Mohammad Khaja Nazeeruddin 《Advanced materials (Deerfield Beach, Fla.)》2017,29(36)
Functionalized imidazolium iodide salts (ionic liquids) modified with ? CH2? CH?CH2, ? CH2C?CH, or ? CH2C?N groups are applied as dopants in the synthesis of CH3NH3PbI3‐type perovskites together with a fumigation step. Notably, a solar cell device prepared from the perovskite film doped with the salt containing the ? CH2? CH?CH2 side‐chain has a power conversion efficiency of 19.21%, which is the highest efficiency reported for perovskite solar cells involving a fumigation step. However, doping with the imidazolium salts with the ? CH2C?CH and ? CH2C?N groups result in perovskite layers that lead to solar cell devices with similar or lower power conversion efficiencies than the dopant‐free cell. 相似文献
5.
6.
Keisuke Nagasawa;Takeshi Sano;Viet Nguyen Chau;Kensei Enomoto;Yutaka Okuyama;Yuya Sayama;Ryosuke Oikawa;Takayuki Chiba;Junji Kido; 《Advanced Materials Interfaces》2024,11(3):2300449
Organic–inorganic halide perovskite solar cells (PVSCs) are considered a promising emerging photovoltaic technology that offer exceptional optoelectronic properties and the potential for economic solar energy conversion. Additive engineering-based fabrication processes can achieve highly efficient and stable PVSCs that feature well-controlled perovskite layers with a dense, uniform, “black” α-phase crystal structure, as well as large grains and few defects. In this study, several hydroxylamine derivatives are introduced as additives to FAPbI3 precursor solutions to investigate their effects on the performance of PVSCs. The addition of hydroxylamine derivatives suppresses the formation of the unwanted δ-phase and lead iodide, while the α-phase cubic structure is preferentially formed without changing the bandgap of FAPbI3. Additionally, the additive-treated perovskite films show improved stability compared with those without additives. Moreover, using X-ray diffraction and X-ray photoelectron spectroscopy analyses, it is discovered that the hydroxylamine-based additives are not incorporated in the crystal lattices but rather resided on the surface or grain boundaries. Notably, the inverted PVSCs added with N-methylhydroxylamine exhibit an improved power conversion efficiency, higher stability, and minimal hysteresis. 相似文献
7.
Hanhong Zhang;Wenjing Hou;Yuying Hao;Jun Song;Fan Zhang; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(38):2400173
Perovskite solar cells, recognized for their high photovoltaic conversion efficiency (PCE), cost-effectiveness, and simple fabrication, face challenges in PCE improvement due to structural defects in polycrystalline films. This study introduces a novel fabrication method for perovskite films using methylammonium chloride (MACl) to align grain orientation uniformly, followed by a high-pressure process to merge these grains into a texture resembling single-crystal perovskite. Employing advanced visual fluorescence microscopy, charge dynamics in these films are analyzed, uncovering the significant impact of grain boundaries on photo-generated charge transport within perovskite crystals. A key discovery is that optimal charge transport efficiency and speed occur in grain centers when the grain size exceeds 10 µm, challenging the traditional view that efficiency peaks when grain size surpasses film thickness to form a monolayer. Additionally, the presence of large-sized grains enhances ion activation energy, reducing ion migration under light and improving resistance to photo-induced degradation. In application, a perovskite solar cell module with large grains achieve a PCE of 22.45%, maintaining performance with no significant degradation under continuous white LED light at 100 mA cm−2 for over 1000 h. This study offers a new approach to perovskite film fabrication and insights into optimizing perovskite solar cell modules. 相似文献
8.
原子层沉积技术(ALD)是一项正处于发展之中、在许多领域具有巨大应用前景的新型材料制备技术,该技术在纳米结构和纳米复合结构的制备方面显示出独特的优势,在新型薄膜太阳能电池领域呈现出巨大的发展潜力和前景。首先概述了ALD技术的工作原理,简要介绍了近几年ALD技术在硅基太阳能电池和铜铟镓硒薄膜电池(CIGS)中的应用,然后重点综述了原子层沉积纳米功能薄膜在染料敏化太阳能电池(DSSCs)和有机-无机杂化钙钛矿太阳能电池(PSCs)为代表的新型薄膜太阳能电池中的应用。最后,总结了原子层沉积功能薄膜的特点和优势,展望了ALD在新能源材料与器件领域的应用前景和发展趋势。 相似文献
9.
Min Wang Haoxuan Sun Meng Wang Linxing Meng Liang Li 《Advanced materials (Deerfield Beach, Fla.)》2024,36(2):2306415
The operational stability is a huge obstacle to further commercialization of perovskite solar cells. To address this critical issue, in this work, uracil is introduced as a “binder” into the perovskite film to simultaneously improve the power conversion efficiency (PCE) and operational stability. Uracil can efficiently passivate defects and strengthen grain boundaries to enhance the stability of perovskite films. Moreover, the uracil also strengthens the interface between the perovskite and the Tin oxide (SnO2) electron transport layer to increase the binding force. The uracil-modified devices deliver a champion PCE of 24.23% (certificated 23.19%) with negligible hysteresis at active area of 0.0625 cm2. In particular, the optimal device exhibits over 90% of its initial PCE after tracking for ≈6000 h at its maximum power point under continuous light, indicating its superior operational stability. Moreover, the devices also show great reproducibility in both PCE and operational stability. 相似文献
10.
Kai Wang Waqas Siddique Subhani Yulong Wang Xiaokun Zuo Hui Wang Lianjie Duan Shengzhong Liu 《Advanced materials (Deerfield Beach, Fla.)》2019,31(50)
Metal halide perovskite solar cells (PVSCs) have revolutionized photovoltaics since the first prototype in 2009, and up to now the highest efficiency has soared to 24.2%, which is on par with commercial thin film cells and not far from monocrystalline silicon solar cells. Optimizing device performance and improving stability have always been the research highlight of PVSCs. Metal cations are introduced into perovskites to further optimize the quality, and this strategy is showing a vigorous development trend. Here, the progress of research into metal cations for PVSCs is discussed by focusing on the position of the cations in perovskites, the modulation of the film quality, and the influence on the photovoltaic performance. Metal cations are considered in the order of alkali cations, alkaline earth cations, then metal cations in the ds and d regions, and ultimately trivalent cations (p‐ and f‐block metal cations) according to the periodic table of elements. Finally, this work is summarized and some relevant issues are discussed. 相似文献
11.
Xiaoyu Gu;Chengwei Shan;Xiaowei Xu;Qian Liu;Aung Ko Ko Kyaw; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(19):2307840
All inorganic perovskite based on CsPbI2Br has attracted significant attention due to its relatively thermal stable structure compare to its hybrid counterparts. With a wide bandgap of 1.9 eV and excellent light absorption capability, it has been extensively explored for applications in indoor photovoltaics and as a front absorber in tandem devices. However, the uncontrollable crystallization process during solvent evaporation and thermal annealing leads to both macroscopic defects like cracks and microscopic defects such as voids. In this study, a metastable adduct with lead (II) halides by incorporating 4-tert-butyl pyridine as a volatile Lewis base monodentate ligand in the precursor solution is formed. The strategic preferential decomposition of the adduct during the early-stage low-temperature annealing facilitated the desorption of lead (II) halides, inducing antisolvent-free heterogenous nucleation. This, in turn, promoted crystal growth during subsequent high-temperature annealing, resulting in dense films with low defect density. As a result, a maximum open-circuit voltage of 1.30 V is achieved with the champion power conversion efficiency of 16.5% in CsPbI2Br-based perovskite solar cell. The work reveals a new mechanism of using Lewis acid-base adduct to obtain high quality perovskite films other than hindering crystallization in traditional way. 相似文献
12.
13.
14.
Veronika Obersteiner Andreas Jeindl Johannes Götz Aurelie Perveaux Oliver T. Hofmann Egbert Zojer 《Advanced materials (Deerfield Beach, Fla.)》2017,29(27)
An innovative strategy for electrostatically designing the electronic structure of 3D bulk materials is proposed to control charge carriers at the nanoscale. This is achieved by shifting the electronic levels of chemically identical semiconducting elements through the periodic arrangement of polar functional groups. For the example of covalent organic networks, by first‐principles calculations, the resulting collective electrostatic effects are shown to allow a targeted manipulation of the electronic landscape such that spatially confined pathways for electrons and holes can be realized. Mimicking donor–acceptor bulk heterojunctions, the new materials hold high promise for photovoltaic applications. The distinct advantage over the conventional approach of splitting excitons through chemically distinct donor and acceptor units is that here the magnitude of the band offset can be continuously tuned by varying the dipole density. A particularly promising feature of the suggested strategy is its structural versatility, which also enables the realization of more complex quantum structures such as quantum‐cascades and quantum‐checkerboards. 相似文献
15.
Kaiping Zhu Zheng Lu Shan Cong Guanjian Cheng Peipei Ma Yanhui Lou Jianning Ding Ningyi Yuan Mark H. Rümmeli Guifu Zou 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(33)
Wearable devices are mainly based on plastic substrates, such as polyethylene terephthalate and polyethylene naphthalate, which causes environmental pollution after use due to the long decomposition periods. This work reports on the fabrication of a biodegradable and biocompatible transparent conductive electrode derived from bamboo for flexible perovskite solar cells. The conductive bioelectrode exhibits extremely flexible and light‐weight properties. After bending 3000 times at a 4 mm curvature radius or even undergoing a crumpling test, it still shows excellent electrical performance and negligible decay. The performance of the bamboo‐based bioelectrode perovskite solar cell exhibits a record power conversion efficiency (PCE) of 11.68%, showing the highest efficiency among all reported biomass‐based perovskite solar cells. It is remarkable that this flexible device has a highly bendable mechanical stability, maintaining over 70% of its original PCE during 1000 bending cycles at a 4 mm curvature radius. This work paves the way for perovskite solar cells toward comfortable and environmentally friendly wearable devices. 相似文献
16.
Annan Zhu;Hao Gu;Wang Li;Jinfeng Liao;Junmin Xia;Chao Liang;Guoxing Sun;Zhendong Sha;Guichuan Xing; 《Small Methods》2024,8(2):2300428
Inverted perovskite solar cells (PSCs) are a promising technology for commercialization due to their reliable operation and scalable fabrication. However, in inverted PSCs, depositing a high-quality perovskite layer comparable to those realized in normal structures still presents some challenges. Defects at grain boundaries and interfaces between the active layer and carrier extraction layer seriously hinder the power conversion efficiency (PCE) and stability of these cells. In this work, it is shown that synergistic bulk doping and surface treatment of triple-cation mixed-halide perovskites with phenylpropylammonium bromine (PPABr) can improve the efficiency and stability of inverted PSCs. The PPABr ligand is effective in eliminating halide vacancy defects and uncoordinated Pb2+ ions at both grain boundaries and interfaces. In addition, a 2D Ruddlesden–Popper (2D-RP) perovskite capping layer is formed on the surface of 3D perovskite by using PPABr post-treatment. This 2D-RP perovskite capping layer possesses a concentrated phase distribution ≈n = 2. This capping layer not only reduces interfacial non-radiative recombination loss and improves carrier extraction ability but also promotes stability and efficiency. As a result, the inverted PSCs achieve a champion PCE of over 23%, with an open-circuit voltage as high as 1.15 V and a fill factor of over 83%. 相似文献
17.
Yongzhen Wu Fengxian Xie Han Chen Xudong Yang Huimin Su Molang Cai Zhongmin Zhou Takeshi Noda Liyuan Han 《Advanced materials (Deerfield Beach, Fla.)》2017,29(28)
Solution‐processed perovskite (PSC) solar cells have achieved extremely high power conversion efficiencies (PCEs) over 20%, but practical application of this photovoltaic technology requires further advancements on both long‐term stability and large‐area device demonstration. Here, an additive‐engineering strategy is developed to realize a facile and convenient fabrication method of large‐area uniform perovskite films composed of large crystal size and low density of defects. The high crystalline quality of the perovskite is found to simultaneously enhance the PCE and the durability of PSCs. By using the simple and widely used methylammonium lead iodide (MAPbI3), a certified PCE of 19.19% is achieved for devices with an aperture area of 1.025 cm2, and the high‐performing devices can sustain over 80% of the initial PCE after 500 h of thermal aging at 85 °C, which are among the best results of MAPbI3‐based PSCs so far. 相似文献
18.
Rui Xia Xiao-Xin Gao Yi Zhang Nikita Drigo Valentin I. E. Queloz Farzaneh Fadaei Tirani Rosario Scopelliti Zhangjun Huang Xiaodong Fang Sachin Kinge Zhaofu Fei Cristina Roldán-Carmona Mohammad Khaja Nazeeruddin Paul J. Dyson 《Advanced materials (Deerfield Beach, Fla.)》2020,32(40):2003801
Despite the excellent photovoltaic properties achieved by perovskite solar cells at the laboratory scale, hybrid perovskites decompose in the presence of air, especially at high temperatures and in humid environments. Consequently, high-efficiency perovskites are usually prepared in dry/inert environments, which are expensive and less convenient for scale-up purposes. Here, a new approach based on the inclusion of an in situ polymerizable ionic liquid, 1,3-bis(4-vinylbenzyl)imidazolium chloride ([bvbim]Cl), is presented, which allows perovskite films to be manufactured under humid environments, additionally leading to a material with improved quality and long-term stability. The approach, which is transferrable to several perovskite formulations, allows efficiencies as high as 17% for MAPbI3 processed in air % relative humidity (RH) ≥30 (from an initial 15%), and 19.92% for FAMAPbI3 fabricated in %RH ≥50 (from an initial 17%), providing one of the best performances to date under similar conditions. 相似文献
19.
Xueliang Zhu Wenqi Xiong Chong Hu Kangwei Mo Man Yang Yanyan Li Ruiming Li Chen Shen Yong Liu Xiaoze Liu Sheng Wang Qianqian Lin Shengjun Yuan Zhengyou Liu Zhiping Wang 《Advanced materials (Deerfield Beach, Fla.)》2024,36(15):2309487
Electronic band structure engineering of metal-halide perovskites (MHP) lies at the core of fundamental materials research and photovoltaic applications. However, reconfiguring the band structures in MHP for optimized electronic properties remains challenging. This article reports a generic strategy for constructing near-edge states to improve carrier properties, leading to enhanced device performances. The near-edge states are designed around the valence band edge using theoretical prediction and constructed through tailored material engineering. These states are experimentally revealed with activation energies of around 23 milli-electron volts by temperature-dependent time-resolved spectroscopy. Such small activation energies enable prolonged carrier lifetime with efficient carrier transition dynamics and low non-radiative recombination losses, as corroborated by the millisecond lifetimes of microwave conductivity. By constructing near-edge states in positive-intrinsic-negative inverted cells, a champion efficiency of 25.4% (25.0% certified) for a 0.07-cm2 cell and 23.6% (22.7% certified) for a 1-cm2 cell is achieved. The most stable encapsulated cell retains 90% of its initial efficiency after 1100 h of maximum power point tracking under one sun illumination (100 mW cm−2) at 65 °C in ambient air. 相似文献