首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present an efficient SLAM (Simultaneous Localization and Mapping) algorithm named VecSLAM, which localizes and builds a vector map for mobile robots in indoor environments. Compared to grid-mapping approaches, vector-based mapping algorithms require a relatively small amount of memory. Two essential operations for successful vector mapping are vector merging and loop closing. Merging methods used by traditional line segment-based mapping algorithms do not consider the sensor characteristics, which causes additional mapping error and makes it harder to close loops after navigation over a long distance. In addition, few line segment-based SLAM approaches contain loop closing methodology. We present a novel vector merging scheme based on a recursive least square estimation for robust mapping. An efficient loop closing method is also proposed, which effectively distributes the resultant mapping error throughout the loop to guarantee global map consistency. Simulation studies and experimental results show that VecSLAM is an efficient and robust online localization and mapping algorithm.  相似文献   

2.
The strength of appearance-based mapping models for mobile robots lies in their ability to represent the environment through high-level image features and to provide human-readable information. However, developing a mapping and a localization method using these kinds of models is very challenging, especially if robots must deal with long-term mapping, localization, navigation, occlusions, and dynamic environments. In other words, the mobile robot has to deal with environmental appearance change, which modifies its representation of the environment. This paper proposes an indoor appearance-based mapping and a localization method for mobile robots based on the human memory model, which was used to build a Feature Stability Histogram (FSH) at each node in the robot topological map. This FSH registers local feature stability over time through a voting scheme, and the most stable features were considered for mapping, for Bayesian localization and for incrementally updating the current appearance reference view in the topological map. The experimental results are presented using an omnidirectional images dataset acquired over the long-term and considering: illumination changes (time of day, different seasons), occlusions, random removal of features, and perceptual aliasing. The results include a comparison with the approach proposed by Dayoub and Duckett (2008) [19] and the popular Bag-of-Words (Bazeille and Filliat, 2010) [35] approach. The obtained results confirm the viability of our method and indicate that it can adapt the internal map representation over time to localize the robot both globally and locally.  相似文献   

3.
A multilevel relaxation algorithm for simultaneous localization and mapping   总被引:2,自引:0,他引:2  
This paper addresses the problem of simultaneous localization and mapping (SLAM) by a mobile robot. An incremental SLAM algorithm is introduced that is derived from multigrid methods used for solving partial differential equations. The approach improves on the performance of previous relaxation methods for robot mapping, because it optimizes the map at multiple levels of resolution. The resulting algorithm has an update time that is linear in the number of estimated features for typical indoor environments, even when closing very large loops, and offers advantages in handling nonlinearities compared with other SLAM algorithms. Experimental comparisons with alternative algorithms using two well-known data sets and mapping results on a real robot are also presented.  相似文献   

4.
张国良  汤文俊  曾静  徐君  姚二亮 《自动化学报》2014,40(10):2073-2088
多机器人系统的通信状况能够直接影响协作同时定位与地图创建(Cooperative simultaneous localization and mapping, CSLAM)算法的设计和实现.根据对多机器人通信状况所作出假设的侧重点不同, 对多机器人CSLAM算法研究现状和进展进行综述.首先,简要介绍了基于完全连通通信条件的集中式CSLAM算法的特点和缺陷; 其次,结合多机器人系统初始相对位姿关系未知的情况,从地图配准、数据关联和地图融合等三个方面, 对基于通信范围或者带宽受限条件的分布式CSLAM算法的地图合并问题进行了分析和阐述; 进而重点对考虑稀疏动态通信状况的分布式CSLAM算法的最新研究成果进行了归纳总结. 最后指出多机器人CSLAM研究领域今后的研究方向.  相似文献   

5.
Real-time hierarchical stereo Visual SLAM in large-scale environments   总被引:1,自引:0,他引:1  
In this paper we present a new real-time hierarchical (topological/metric) Visual SLAM system focusing on the localization of a vehicle in large-scale outdoor urban environments. It is exclusively based on the visual information provided by a cheap wide-angle stereo camera. Our approach divides the whole map into local sub-maps identified by the so-called fingerprints (vehicle poses). At the sub-map level (low level SLAM), 3D sequential mapping of natural landmarks and the robot location/orientation are obtained using a top-down Bayesian method to model the dynamic behavior. A higher topological level (high level SLAM) based on fingerprints has been added to reduce the global accumulated drift, keeping real-time constraints. Using this hierarchical strategy, we keep the local consistency of the metric sub-maps, by mean of the EKF, and global consistency by using the topological map and the MultiLevel Relaxation (MLR) algorithm. Some experimental results for different large-scale outdoor environments are presented, showing an almost constant processing time.  相似文献   

6.
This article proposes a reinforcement learning procedure for mobile robot navigation using a latent-like learning schema. Latent learning refers to learning that occurs in the absence of reinforcement signals and is not apparent until reinforcement is introduced. This concept considers that part of a task can be learned before the agent receives any indication of how to perform such a task. In the proposed topological reinforcement learning agent (TRLA), a topological map is used to perform the latent learning. The propagation of the reinforcement signal throughout the topological neighborhoods of the map permits the estimation of a value function which takes in average less trials and with less updatings per trial than six of the main temporal difference reinforcement learning algorithms: Q-learning, SARSA, Q(λ)-learning, SARSA(λ), Dyna-Q and fast Q(λ)-learning. The RL agents were tested in four different environments designed to consider a growing level of complexity in accomplishing navigation tasks. The tests suggested that the TRLA chooses shorter trajectories (in the number of steps) and/or requires less value function updatings in each trial than the other six reinforcement learning (RL) algorithms.  相似文献   

7.
8.
In this paper, we describe a probabilistic voxel mapping algorithm using an adaptive confidence measure of stereo matching. Most of the 3D mapping algorithms based on stereo matching usually generate a map formed by point cloud. There are many reconstruction errors. The reconstruction errors are due to stereo reconstruction error factors such as calibration errors, stereo matching errors, and triangulation errors. A point cloud map with reconstruction errors cannot accurately represent structures of environments and needs large memory capacity. To solve these problems, we focused on the confidence of stereo matching and probabilistic representation. For evaluation of stereo matching, we propose an adaptive confidence measure that is suitable for outdoor environments. The confidence of stereo matching can be reflected in the probability of restoring structures. For probabilistic representation, we propose a probabilistic voxel mapping algorithm. The proposed probabilistic voxel map is a more reliable representation of environments than the commonly used voxel map that just contains the occupancy information. We test the proposed confidence measure and probabilistic voxel mapping algorithm in outdoor environments.  相似文献   

9.
魏彤  金砺耀 《机器人》2018,40(3):266-272
针对现有视觉障碍物定位算法无法定位移出视野的障碍物且存在定位噪声的问题,提出一种基于双目ORB-SLAM (基于ORB特征的同时定位与地图构建系统)的障碍物记忆定位与去噪算法.算法在障碍物识别的基础上,首先将逐帧障碍物像点通过SLAM (同步定位与地图创建)地图投影到地面栅格,然后计算栅格内标准障碍物投影点数,进而采用大津(Otsu)法去除定位噪声,最终得到准确的障碍物记忆定位结果.实验结果显示,障碍物移出视野后仍能被记忆定位,单一障碍物去噪成功率达到95.3%,并且平均处理速度达到每秒8个关键帧.这证明本文算法实现了障碍物记忆定位,具有良好的去噪性能及实时性.  相似文献   

10.
This paper presents a new map specifically designed for robots operating in large environments and possibly in higher dimensions. We call this map the hierarchical atlas because it is a multilevel and multiresolution representation. For this paper, the hierarchical atlas has two levels: at the highest level there is a topological map that organizes the free space into submaps at the lower level. The lower-level submaps are simply a collection of features. The hierarchical atlas allows us to perform calculations and run estimation techniques, such as Kalman filtering, in local areas without having to correlate and associate data for the entire map. This provides a means to explore and map large environments in the presence of uncertainty with a process named hierarchical simultaneous localization and mapping. As well as organizing information of the free space, the map also induces well-defined sensor-based control laws and a provably complete policy to explore unknown regions. The resulting map is also useful for other tasks such as navigation, obstacle avoidance, and global localization. Experimental results are presented showing successful map building and subsequent use of the map in large-scale spaces.  相似文献   

11.
Rao–Blackwellized particle filters have become a popular tool to solve the simultaneous localization and mapping problem. This technique applies a particle filter in which each particle carries an individual map of the environment. Accordingly, a key issue is to reduce the number of particles and/or to make use of compact map representations. This paper presents an approximative but highly efficient approach to mapping with Rao–Blackwellized particle filters. Moreover, it provides a compact map model. A key advantage is that the individual particles can share large parts of the model of the environment. Furthermore, they are able to reuse an already computed proposal distribution. Both techniques substantially speed up the overall filtering process and reduce the memory requirements. Experimental results obtained with mobile robots in large-scale indoor environments and based on published standard datasets illustrate the advantages of our methods over previous mapping approaches using Rao–Blackwellized particle filters.  相似文献   

12.
Gas distribution mapping (GDM) learns models of the spatial distribution of gas concentrations across 2D/3D environments, among others, for the purpose of localizing gas sources. GDM requires run-time robot positioning in order to associate measurements with locations in a global coordinate frame. Most approaches assume that the robot has perfect knowledge about its position, which does not necessarily hold in realistic scenarios. We argue that the simultaneous localization and mapping (SLAM) algorithm should be used together with GDM to allow operation in an unknown environment. This paper proposes an SLAM-GDM approach that combines Hector SLAM and Kernel DM?+?V through a map merging technique. We argue that Hector SLAM is suitable for the SLAM-GDM approach since it does not perform loop closure or global corrections, which in turn would require to re-compute the gas distribution map. Real-time experiments were conducted in an environment with single and multiple gas sources. The results showed that the predictions of gas source location in all trials were often correct to around 0.5–1.5 m for the large indoor area being tested. The results also verified that the proposed SLAM-GDM approach and the designed system were able to achieve real-time operation.  相似文献   

13.
Among the solutions to the simultaneous localization and mapping (SLAM) problem with probabilistic techniques, the extended Kalman filter (EKF) is a very common approach. There are several approaches to deal with its computational cost, usually based on an adequate selection of features to be updated in real time, while the whole map update is delayed or processed in a background task, allowing one to map larger environments or to carry out multirobot experiments. Although these solutions are theoretically sound, there is a great lack of real experiments in large indoor environments due to several previously unknown problems derived from the geometric model of the map features and the inconsistency of the SLAM‐EKF algorithm. For the first time, these problems are described and solved, and the implementation of the algorithms and solutions presented in this paper achieve excellent results in experiments in different real large indoor environments. © 2006 Wiley Periodicals, Inc.  相似文献   

14.
针对传统的尺度均一概率栅格地图表达法在大尺度未知环境下地图创建过程中海量数据存储和相关量计算问题,提出一类基于四叉树的栅格大小自适应地图创建算法.利用四叉树理论,根据地图不同区域环境障碍物密度的变化,自适应调整各区域栅格尺度大小.仿真结果表明,所提出的算法不仅降低了数据存储量,而且栅格量的减少使得相关量计算大大降低,提高了移动机器人地图创建的实时性和地图表达的精度.  相似文献   

15.
《Advanced Robotics》2013,27(6-7):941-962
In this paper we present an algorithm for the application of simultaneous localization and mapping in complex environments. Instead of building a grid map or building a feature map with a small number of the obstacles' geometric parameters, the proposed algorithm builds a sampled environment map (SEM) to represent a complex environment with a set of environment samples. To overcome the lack of one-toone correspondence between environment samples and raw observations, the signed orthogonal distance function is proposed to be used as the observation model. A method considering geometric constraints is presented to remove redundant environment samples from the SEM. We also present a method to improve the SEM's topological consistency by using corner constraints. The proposed algorithm has been verified in a simulation and an indoor experiment. The results show that the algorithm can localize the robot and build a complex map effectively.  相似文献   

16.
基于FP-Tree的频繁闭合项目集挖掘算法的研究   总被引:1,自引:0,他引:1  
目前频繁闭合项目集挖掘算法有很多,例如CLOSET[1]。CLOSET以FP-Growth为基础,采用FP-Tree来表示模式支持集,通过深度优先搜索来挖掘频繁闭合模式。其困难是,递归构造“条件FP-Tree”的CPU开销和存储开销很大。为解决上面的问题,论文提出一种基于FP-Tree和COFI-Tree的频繁闭合项目集挖掘算法,在该算法中引用了COFI-Tree结构,COFI-Tree无需递归地构造“条件FP-Tree”,并且某一时刻只有一个频繁项的COFI-Tree在内存,所以大大减少了内存消耗。通过实验证明:当挖掘大型数据库时,在执行时间方面,该算法比其它算法更有效。  相似文献   

17.
Most of the existing appearance-based topological mapping algorithms produce dense topological maps in which each image stands as a node in the topological graph. Sparser maps can be built by representing groups of visually similar images of a sequence as nodes of a topological graph. In this paper, we present a sparse/hierarchical topological mapping framework which uses Image Sequence Partitioning (ISP) to group visually similar images of a sequence as nodes which are then connected on the occurrence of loop closures to form a topological graph. An indexing data structure called Hierarchical Inverted File (HIF) is proposed to store the sparse maps so as to perform loop closure at the two different resolutions of the map namely the node level and image level. TFIDF weighting is combined with spatial and frequency constraints on the detected features for improved loop closure robustness. Our approach is compared with two other existing sparse mapping approaches which use ISP. Sparsity, efficiency and accuracy of the resulting maps are evaluated and compared to that of the other two techniques on publicly available outdoor omni-directional image sequences.  相似文献   

18.
We present a practical approach to global motion planning and terrain assessment for ground robots in generic three‐dimensional (3D) environments, including rough outdoor terrain, multilevel facilities, and more complex geometries. Our method computes optimized six‐dimensional trajectories compliant with curvature and continuity constraints directly on unordered point cloud maps, omitting any kind of explicit surface reconstruction, discretization, or topology extraction. We assess terrain geometry and traversability on demand during motion planning, by fitting robot‐sized planar patches to the map and analyzing the local distribution of map points. Our motion planning approach consists of sampling‐based initial trajectory generation, followed by precise local optimization according to a custom cost measure, using a novel, constraint‐aware trajectory optimization paradigm. We embed these methods in a complete autonomous navigation system based on localization and mapping by means of a 3D laser scanner and iterative closest point matching, suitable for both static and dynamic environments. The performance of the planning and terrain assessment algorithms is evaluated in offline experiments using recorded and simulated sensor data. Finally, we present the results of navigation experiments in three different environments—rough outdoor terrain, a two‐level parking garage, and a dynamic environment, demonstrating how the proposed methods enable autonomous navigation in complex 3D terrain.  相似文献   

19.
The problem of learning a map with a mobile robot has been intensively studied in the past and is usually referred to as the simultaneous localization and mapping (SLAM) problem. However, most existing solutions to the SLAM problem learn the maps from scratch and have no means for incorporating prior information. In this paper, we present a novel SLAM approach that achieves global consistency by utilizing publicly accessible aerial photographs as prior information. It inserts correspondences found between stereo and three-dimensional range data and the aerial images as constraints into a graph-based formulation of the SLAM problem. We evaluate our algorithm based on large real-world datasets acquired even in mixed in- and outdoor environments by comparing the global accuracy with state-of-the-art SLAM approaches and GPS. The experimental results demonstrate that the maps acquired with our method show increased global consistency.  相似文献   

20.
基于粒子滤波和点线相合的未知环境地图构建方法   总被引:1,自引:0,他引:1  
王文斐  熊蓉  褚健 《自动化学报》2009,35(9):1185-1192
针对粒子滤波处理未知环境地图构建时存在存储空间负荷高、计算量大的问题, 本文使用线段特征描述环境信息, 将点线相合的增量式地图构建方法引入粒子滤波中. 在每个粒子中保存对已构建线段特征地图的假设; 使用点线相合的位姿估计算法将观测信息引入重要性函数, 确定采样空间; 通过观测信息与已构建线段特征地图之间的相合关系更新粒子权重; 最后通过选择性重采样去除因匹配不当和误差积累产生的错误地图. 分析表明, 该算法的复杂度较低. 在真实传感器数据上的实验结果验证了该算法构建室内环境地图的有效性和鲁棒性. 算法所需存储空间和粒子数远小于现有粒子滤波地图构建方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号