共查询到20条相似文献,搜索用时 0 毫秒
1.
Jihyeon Yeom Pedro P. G. Guimaraes Hyo Min Ahn Bo-Kyeong Jung Quanyin Hu Kevin McHugh Michael J. Mitchell Chae-Ok Yun Robert Langer Ana Jaklenec 《Advanced materials (Deerfield Beach, Fla.)》2020,32(1):1903878
Chirality is ubiquitous in nature and hard-wired into every biological system. Despite the prevalence of chirality in biological systems, controlling biomaterial chirality to influence interactions with cells has only recently been explored. Chiral-engineered supraparticles (SPs) that interact differentially with cells and proteins depending on their handedness are presented. SPs coordinated with d -chirality demonstrate greater than threefold enhanced cell membrane penetration in breast, cervical, and multiple myeloma cancer cells. Quartz crystal microbalance with dissipation and isothermal titration calorimetry measurements reveal the mechanism of these chiral-specific interactions. Thermodynamically, d -SPs show more stable adhesion to lipid layers composed of phospholipids and cholesterol compared to l -SPs. In vivo, d -SPs exhibit superior stability and longer biological half-lives likely due to opposite chirality and thus protection from endogenous proteins including proteases. This work shows that incorporating d -chirality into nanosystems enhances uptake by cancer cells and prolonged in vivo stability in circulation, providing support for the importance of chirality in biomaterials. Thus, chiral nanosystems may have the potential to provide a new level of control for drug delivery systems, tumor detection markers, biosensors, and other biomaterial-based devices. 相似文献
2.
3.
Lucyna Firlej Peter Pfeifer Bogdan Kuchta 《Advanced materials (Deerfield Beach, Fla.)》2013,25(41):5971-5974
4.
5.
Tao Wang Francis Okejiri Zhen-An Qiao Sheng Dai 《Advanced materials (Deerfield Beach, Fla.)》2020,32(44):2002475
Porous carbon spheres derived from polymer colloids with regular geometry, monodispersed morphology, well-controlled contents and structures play important roles in many areas of application, such as energy storage/conversion, gas adsorption/separation, catalysis, and chemo-photothermal therapy. Suitable polymerization reaction and synthetic strategy are both critical for the obtainment of stable polymer colloids as carbon precursors. Basic polymerization reactions are the cornerstones of synthetic strategies, which directly provides the direct molecular-based design of functionalized polymer/carbon spheres. Thus, this progress report mainly focuses on the summary of suitable polymerization reactions for colloidal polymer derived porous carbon spheres. Recent advances in the synthetic strategies and applications are also discussed, including their corresponding polymerization reactions. Finally, the perspectives for the development of polymer derived porous carbon spheres are provided based on the controlled synthesis of polymer colloids and optimization over the carbonization process to achieve highly functionalized carbon spheres for practical applications. 相似文献
6.
Yilin He;Xuliang Qian;Guilherme Carneiro Queiroz da Silva;Cristian Gabellini;Matteo Andrea Lucherelli;Giacomo Biagiotti;Barbara Richichi;Cécilia Ménard-Moyon;Huajian Gao;Paola Posocco;Alberto Bianco; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(26):2307817
Liquid-phase exfoliation (LPE) in aqueous solutions provides a simple, scalable, and green approach to produce 2D materials. By combining atomistic simulations with exfoliation experiments, the interaction between a surfactant and a 2D layer at the molecular scale can be better understood. In this work, two different dyes, corresponding to rhodamine B base (Rbb) and to a phenylboronic acid BODIPY (PBA-BODIPY) derivative, are employed as dispersants to exfoliate graphene and hexagonal boron nitride (hBN) through sonication-assisted LPE. The exfoliated 2D sheets, mostly as few-layers, exhibit good quality and high loading of dyes. Using molecular dynamics (MD) simulations, the binding free energies are calculated and the arrangement of both dyes on the layers are predicted. It has been found that the dyes show a higher affinity toward hBN than graphene, which is consistent with the higher yields of exfoliated hBN. Furthermore, it is demonstrated that the adsorption behavior of Rbb molecules on graphene and hBN is quite different compared to PBA-BODIPY. 相似文献
7.
磁性多孔碳材料同时具有磁性和多孔性质,其拥有丰富的孔道结构、高的比表面积、高孔容、良好的活性位点和磁性可分离等优异的性能,可以很好的解决多孔碳材料在应用过程中难分离回收等问题,因此,磁性多孔碳材料已经在吸附领域得到广泛的应用.按照孔径大小、磁性强弱以及组合方式的不同将磁性多孔碳材料进行了分类,并综述了近年来磁性多孔碳材... 相似文献
8.
石墨相氮化碳(Graphitic carbon nitride,g-C_3N_4)是一种由碳(C)和氮(N)元素组成的共轭聚合物材料,具有平面的三嗪聚合物(Poly(tri-s-triazine))网络结构。比起大部分其他碳材料,氮化碳是富电子体,因而赋予了其特殊的性质。然而目前对于g-C_3N_4的研究主要集中在其相关催化作用(光催化,电催化和光电催化),对于g-C_3N_4的吸附作用的研究相对很少涉及。本文探讨了g-C_3N_4材料在吸附领域中的应用,简要综述了G-C_3N_4的性质、制备方法及其作为吸附材料的应用现状,最后展望了石墨型氮化碳在吸附应用领域的未来发展方向。 相似文献
9.
以三聚氰胺与甲醛为原料,二甲苯为分散相,利用浓乳液模板法合成了密胺树脂多孔材料。研究了预聚过程以及不同单体配比、分散相体积分数和乳化剂用量对密胺树脂多孔材料结构的影响。结果表明,当预聚温度为75℃,预聚时间为20min,预聚体系pH值为8时,得到的预聚物可以制备出稳定的浓乳液。当单体配比n(三聚氰胺)∶n(甲醛)=1∶3,分散相体积分数为85%,乳化剂的量为20%时,可以制备出比表面积为3.317m~2/g的密胺树脂多孔材料。所制备的多孔材料可用于吸附二氧化碳,最大吸附量为60.3mg/g。 相似文献
10.
11.
Tuan K. A. Hoang David M. Antonelli 《Advanced materials (Deerfield Beach, Fla.)》2009,21(18):1787-1800
Hydrogen adsorption and storage using solid‐state materials is an area of much current research interest, and one of the major stumbling blocks in realizing the hydrogen economy. However, no material yet researched comes close to reaching the DOE 2015 targets of 9 wt% and 80 kg m?3 at this time. To increase the physisorption capacities of these materials, the heats of adsorption must be increased to ~20 kJ mol?1. This can be accomplished by optimizing the material structure, creating more active species on the surface, or improving the interaction of the surface with hydrogen. The main focus of this progress report are recent advances in physisorption materials exhibiting higher heats of adsorption and better hydrogen adsorption at room temperature based on exploiting the Kubas model for hydrogen binding: (η2‐H2)–metal interaction. Both computational approaches and synthetic achievements will be discussed. Materials exploiting the Kubas interaction represent a median on the continuum between metal hydrides and physisorption materials, and are becoming increasingly important as researchers learn more about their applications to hydrogen storage problems. 相似文献
12.
为了应对日益频发的溢油事故,实现含油水体的净化,通过高内相Pickering乳液模板法制备了FeNi2O4掺杂的甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料。采用FTIR、SEM、TGA、VSM、接触角测量仪、静态压汞仪、万能试验机等对材料结构与性能进行表征与分析。结果表明,材料具有三维分级多孔结构,孔径主要分布于3 μm及6~14 μm且大孔孔径可调节。材料热稳定性好,初始热分解温度最高达300℃。FeNi2O4纳米粒子的引入不仅提升了乳液稳定性,也赋予材料磁响应性。材料具有良好的疏水亲油性,水接触角达151°、滚动角为5°、油接触角为0°,吸油速率快,并具有良好的重复利用性和优异的油水吸附选择性,对多种油品及有机溶剂的饱和吸附倍率达40.80~93.08 g·g−1,且保油率均在90%以上。探究了材料的孔结构调控,发现,改变乳液的内相比可以调节材料的大孔分布、孔隙率、密度、比表面积、吸油倍率和力学性能。综上说明:超疏水FeNi2O4/甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料可以高效分离水中油污,对水体环境的治理与净化具有现实意义。 相似文献
13.
14.
本工作合成了一种具有高吸附性能和光催化性能的表面改性竹炭/二氧化钛(SMBC/TiO2)纳米复合材料。通过湿法氧化处理廉价、天然绿色的竹炭(BC), 制备了具有良好吸附性、化学稳定性的表面改性竹炭(SMBC)。经过改性, BC表面生成大量含氧官能团, 因此SMBC粒子易分散于水中, 并且与TiO2有较强的相互作用, 确保TiO2均匀地负载在SMBC表面。SMBC/TiO2比BC/TiO2有更大的比表面积, 能提供更强的吸附性能。SMBC/TiO2的饱和吸附容量大约是BC/TiO2的1.6倍, 是TiO2的12.1倍。吸附和催化的协同作用使SMBC/TiO2复合材料降解MB具有更高的光催化活性, SMBC/TiO2光催化降解MB的速率常数分别是BC/TiO2 和TiO2的7倍和6倍。 相似文献
15.
惰性气体氙与氪的分离在大气放射性核素监测、惰性气体工业制备和乏燃料处理等领域中均有重要应用。常规的方法是利用低温精馏将氙与氪从大气中分离,需要耗费大量能源,成本高。因此,作为替代方法在常温下通过多孔材料高效吸附分离氙与氪具有重要意义。近年来发展的以金属有机框架材料、多孔有机分子笼材料等为代表的新型多孔材料在惰性气体氙与氪的分离中展现出了优异的性能与良好的应用前景。系统地综述了新型多孔材料在Xe/Kr分离中的研究进展,从计算模拟在Xe/Kr分离研究中的应用、高浓度氙/氪分离研究与极低浓度Xe/Kr分离研究3个方面进行论述与总结,最后对未来研究趋势进行了总结与展望。 相似文献
16.
骨架含强配位基的有机无机杂化多级孔材料合成是目前吸附研究的一个重要领域。以bis (hexamethylene) triamino-N, N-bisacetyl-phosphonic acid和ZrOCl2·8H2O为原料、应用水热合成技术合成了一种新型膦酸锆多级孔材料ZrPTA, 并通过FT-IR、TGA、XRD、XPS、SEM以及元素分析等手段对制备产物进行了表征。研究结果表明, ZrPTA具有棒状微形貌, 其内部存在大量直径为1.38 nm和1.93 nm的微孔以及直径为2.99 nm的介孔, 其表面积为112.2 m2/g。ZrPTA对水溶液中Pb2+、Cu2+和Cd2+三种金属离子具有良好的吸附作用, 最大吸附量分别为742.7、689.8和627.0 mg/g, 远远高于文献报道值。这一性质使ZrPTA具有潜在的废水处理功效, 显示出诱人的应用前景。 相似文献
17.
Keiko Kikuchi Kazumasa IkedaRin Okayasu Kenta Takagi Akira Kawasaki 《Materials Science and Engineering: A》2011,528(28):8292-8298
The relationships between elastic properties and structures in three-dimensionally periodic porous materials, comprising a periodic array of truncated spheres of air with interconnection pathways embedded in a solid matrix, were investigated both numerically and experimentally. Finite elemental analysis was conducted for the face-centered-cubic (fcc) structure of the air-sphere model, as well as the solid-rod-connected model for comparison. The advantage of the air-sphere periodic structure, having greater rigidity than the solid-rod-connected structure for the same volume fraction, has been emphasized. The calculation results indicated that Young's modulus was consistently larger for the air-sphere model regardless of the size of the interconnection pathways of neighboring air spheres. Additionally, the interconnections were beneficial in lowering the internal stresses. However, it was necessary to focus on the interconnection size to avoid the excessive stress concentration compared with the stress in the solid-rod-connected structure.Polymer-inverted porous structures of fcc particle arrays with a solid volume fraction of 26.0% were fabricated by the combination of sintering self-assembled, monosized copper particles and replication. Their measured Young's moduli agreed well with the numerical results, confirming the advantage of greater rigidity. 相似文献
18.
丁一;冯树;梅泽楷;孔凡功;戴红旗;杨伟胜 《复合材料学报》2024,14(10):5257-5269
餐厨垃圾和工业废水中油和水的高效分离仍具挑战性。传统的油水分离技术主要包括重力沉降、离心、吸附、浮选和电化学等,存在着分离效率低、分离不彻底等问题。如何高效且低成本地实现油水分离已成为当前研究的热点。木材是一种可持续发展的生物材料,并且自身具有多级孔隙结构和丰富羟基官能团,其衍生物具备超浸润特性,因此其有望成为一种新型的油水分离材料。通过优化木材内部细胞孔径,对其进行超疏水或超亲水表面润湿性改性,进而促进木质基复合材料对油水混合乳液的物理化学过滤和吸附,最终实现废水中油污的有效去除。本文对油水混合物及含油废水的特性及危害进行了概述,并系统综述了具有超浸润特性(超亲水/水下超疏油、超疏水/超亲油)的木基多孔过滤膜和吸附材料用于分离含油废水的构建策略,概述了近年来具有超浸润特性的木基生物质多孔材料在油水分离领域的研究进展,并总结了这种材料存在的问题,展望了未来潜在的研究方向。 相似文献
19.
Nelson Naveas Vicente Torres Costa Dario Gallach Jacobo Hernandez-Montelongo Raul Jose Martín Palma Josefa Predenstinacion Garcia-Ruiz Miguel Manso-Silván 《Science and Technology of Advanced Materials》2012,13(4)
Porous silicon (PSi) is widely used in biological experiments, owing to its biocompatibility and well-established fabrication methods that allow tailoring its surface. Nevertheless, there are some unresolved issues such as deciding whether the stabilization of PSi is necessary for its biological applications and evaluating the effects of PSi stabilization on the surface biofunctionalization with proteins. In this work we demonstrate that non-stabilized PSi is prone to detachment owing to the stress induced upon biomolecular adsorption. Biofunctionalized non-stabilized PSi loses the interference properties characteristic of a thin film, and groove-like structures resulting from a final layer collapse were observed by scanning electron microscopy. Likewise, direct PSi derivatization with 3-aminopropyl-triethoxysilane (APTS) does not stabilize PSi against immunoglobulin biofunctionalization. To overcome this problem, we developed a simple chemical process of stabilizing PSi (CoxPSi) for biological applications, which has several advantages over thermal stabilization (ToxPSi). The process consists of chemical oxidation in H2O2, surface derivatization with APTS and a curing step at 120 °C. This process offers integral homogeneous PSi morphology, hydrophilic surface termination (contact angle θ = 26°) and highly efficient derivatized and biofunctionalized PSi surfaces (six times more efficient than ToxPSi). All these features are highly desirable for biological applications, such as biosensing, where our results can be used for the design and optimization of the biomolecular immobilization cascade on PSi surfaces. 相似文献
20.
AbstractPorous silicon (PSi) is widely used in biological experiments, owing to its biocompatibility and well-established fabrication methods that allow tailoring its surface. Nevertheless, there are some unresolved issues such as deciding whether the stabilization of PSi is necessary for its biological applications and evaluating the effects of PSi stabilization on the surface biofunctionalization with proteins. In this work we demonstrate that non-stabilized PSi is prone to detachment owing to the stress induced upon biomolecular adsorption. Biofunctionalized non-stabilized PSi loses the interference properties characteristic of a thin film, and groove-like structures resulting from a final layer collapse were observed by scanning electron microscopy. Likewise, direct PSi derivatization with 3-aminopropyl-triethoxysilane (APTS) does not stabilize PSi against immunoglobulin biofunctionalization. To overcome this problem, we developed a simple chemical process of stabilizing PSi (CoxPSi) for biological applications, which has several advantages over thermal stabilization (ToxPSi). The process consists of chemical oxidation in H2O2, surface derivatization with APTS and a curing step at 120 °C. This process offers integral homogeneous PSi morphology, hydrophilic surface termination (contact angle θ = 26°) and highly efficient derivatized and biofunctionalized PSi surfaces (six times more efficient than ToxPSi). All these features are highly desirable for biological applications, such as biosensing, where our results can be used for the design and optimization of the biomolecular immobilization cascade on PSi surfaces. 相似文献