首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
通过化学交联法合成组氨酸修饰透明质酸耦合物(His-HA),制备载阿霉素纳米粒,分析其pH值响应性和抗肿瘤特征.研究显示,随着pH值的降低(7.4~5.5),纳米粒的粒径增大(230~780nm),zeta电位升高,载药纳米粒的体外释放量增加.细胞毒性实验显示粒径<300nm的载药纳米粒具更高的毒性.细胞摄入实验表明,阿霉素通过受体介导的胞吞和载药纳米粒的胞外释放两种途径被细胞摄入.以上研究显示组氨酸修饰透明质酸纳米粒具有显著的pH值响应性,具备作为阿霉素药物载体的应用前景.  相似文献   

2.
Biotemplated metal nanoclusters have garnered much attention owing to their wide range of potential applications in biosensing, bioimaging, catalysis, and nanomedicine. Here, we report the synthesis of stable, biocompatible, water-soluble, and highly fluorescent bovine serum albumin-templated cadmium nanoclusters (CdNCs) through a facile one-pot green method. We covalently conjugated hyaluronic acid (HA) to the CdNCs to form a pH-responsive, tumortargeting theranostic nanocarrier with a sustained release profile for doxorubicin (DOX), a model anticancer drug. The nanocarrier showed a DOX encapsulation efficiency of about 75.6%. DOX release profiles revealed that 74% of DOX was released at pH 5.3, while less than 26% of DOX was released at pH 7.4 within the same 24-h period. The nanocarrier selectively recognized MCF-7 breast cancer cells expressing CD44, a cell surface receptor for HA, whereas no such recognition was observed with HA receptor-negative HEK293 cells. Biocompatibility of the nanocarrier was evaluated through cytotoxicity assays with HEK293 and MCF-7 cells. The nanocarrier exhibited very low to no cytotoxicity, whereas the DOX-loaded nanocarrier showed considerable cellular uptake and enhanced MCF-7 breast cancer cell-killing ability. We also confirmed the feasibility of using the highly fluorescent nanoconjugate for bioimaging of MCF-7 and HeLa cells. The superior targeted drug delivery efficacy, cellular imaging capability, and low cytotoxicity position this nanoconjugate as an exciting new nanoplatform with promising biomedical applications.
  相似文献   

3.
Objective: This study was aimed to develop DOX-TPP loaded acetal-PEG-PCCL micelles to improve the clinical efficacy of drug resistance tumor.

Significance: Chemotherapy is one of the main treatments for breast cancer but is plagued by multidrug resistance (MDR). DOX-TPP-loaded micelles can enhance the specific concentration of drugs in the tumor and improve the efficacy and overcome MDR.

Methods: In this study, DOX-TPP-loaded micelles based on acetal-PEG-PCCL were prepared and their physicochemical properties were characterized. The cellular uptake and ability to induce apoptosis of the micelles was confirmed by flow cytometry in MCF-7/ADR cells. In addition, cytotoxicity of the micelles was studied in MCF-7 cells and MCF-7/ADR cells. Confocal is used to study the subcellular distribution of DOX. Free DOX-TPP or DOX-TPP-loaded acetal-PEG-PCCL micelles were administered via intravenous injection in the tail vain for the biodistribution study in vivo.

Results: The diameter of micelles was about 102.4?nm and their drug-loading efficiency is 61.8%. The structural characterization was confirmed by 1H NMR. The micelles exhibited better antitumor efficacy compared to free doxorubicin in MCF-7/ADR cells by MTT assay. The apoptotic rate and the cellular uptake of micelles were significantly higher than free DOX and DOX-TPP. Micelles can efficiently deliver mitochondria-targeting DOX-TPP to tumor cells. The result of bio-distribution showed that the micelles had stronger tumor infiltration ability than free drugs.

Conclusions: In this study, mitochondriotropic DOX-TPP was conjugated to the nanocarrier acetal-PEG-PCCL via ionic interaction to form a polymer, which spontaneously formed spherical micelles. The cytotoxicity and cellular uptake of the micelles are superior to free DOX and exhibit mitochondrial targeting and passive tumor targeting, indicating that they have potential prospects.  相似文献   

4.
The aim of this paper is to evaluate the cellular uptake of vincristine sulfate-loaded poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) nanoparticles with the folic acid modification (PLGA-PEG-folate NPs). PLGA-PEG-folate NPs were prepared using a water-oil-water emulsion solvent evaporation method. The particle size, surface morphology, drug encapsulation efficiency, and the drug release behavior were investigated. The NPs exhibited a biphasic drug release with a moderate initial burst followed by a sustained release profile. Internalization of the NPs labeled with coumarin- 6 by MCF-7 (Michigan Cancer Foundation-7) human breast cancer cells was quantitatively measured by microplate reader, and qualitatively analyzed by fluorescent microscopy and confocal laser scanning microscopy. The results showed PLGA-PEG-folate NPs achieved significantly higher cellular uptake in the folic acid receptor overexpressed MCF-7 cells, compared to PLGA-mPEG NPs without the folic acid modification. Due to the enhanced cellular uptake, PLGA-PEG-folate NPs displayed the highest cytotoxicity. Judged by IC(50) after 24 h culture, the therapeutic effects of the drug formulated in the NPs with surface modification could be 1.52 times, 3.91 times higher than that of PLGA-mPEG NPs and free vincristine sulfate, respectively.  相似文献   

5.
Herein is reported the one-step synthesis of an integrated nanocomposite with eccentrically loaded 5 nm gold nanoparticles (Au NPs) and conjugated polymer of poly[9,9-bis(6'-N,N,N-trimethylammonium)hexyl)fluorenyldivinylene-alt-4,7-(2,1,3,- benzothiadiazole) dibromide] (PFVBT). The nanocomposite is generated with surface-functionalized folic acid groups due to the matrix polymer of PLGA-PEG(2000) -folate used for encapsulation. The nanocomposite shows far-red fluorescence from PFVBT and scattering signal from Au NPs. Although Au NPs have been widely reported to quench the fluorescence of conjugated polymers, the PFVBT fluorescence is well maintained in the nanocomposite due to the eccentric location of Au NPs. The folic acid groups at the nanocomposite surface favor its cellular uptake by MCF-7 breast cancer cells, which have overexpressed folate receptors on the cell membranes. In conjugation with its low cytotoxicity, the folic-acid-functionalized nanocomposite has been successfully utilized for fluorescence and dark-field dual-modal targeted cellular imaging.  相似文献   

6.
Novel nanostructured lipid–carrageenan hybrid carriers (NLCCs) were exploited for controlled delivery of water soluble chemotherapeutic agent mitoxantrone hydrochloride (MTO) with high loading capacity, sustained release property, and potential for improving oral bioavailability and antitumor efficacy. By introducing the negative polymer of carrageenan, MTO was highly incorporated into NLCCs with encapsulation efficiency of 95.8% by electrostatic interaction. In vivo pharmacokinetics of MTO solution (MTO-Sol) and MTO-NLCCs in rats demonstrated that the apparent bioavailability of MTO-NLCCs was increased to approximate 3.5-fold compared to that of MTO-Sol. The cytotoxicity investigations by MTT method indicated that NLCCs could significantly enhanced the antitumor efficacy against resistant MCF-7/MX cells. The relative cellular association of MTO-NLCCs was 9.2-fold higher than that of MTO-Sol in breast cancer resistance protein (BCRP) over-expressing MCF-7/MX cells, implying that BCRP-mediated drug efflux was diminished by the introduction of NLCCs. The endocytosis inhibition study implied that the NLCCs entered the MCF-7/MX cells by clathrin-mediated endocytosis process, which can bypass the efflux of MTO mediated by BCRP. The new developed NLCCs provide an effective strategy for oral delivery of water-soluble MTO with improved encapsulation efficiency, oral bioavailability, and cytotoxicity against resistant breast cancer cells.  相似文献   

7.
Nano‐sized in vivo active targeting drug delivery systems have been developed to a high anti‐tumor efficacy strategy against certain cancer‐cells‐specific. Graphene based nanocarriers with unique physical and chemical properties have shown significant potentials in this aspect. Here, octreotide (OCT), an efficient biotarget molecule, is conjugated to PEGylated nanographene oxide (NGO) drug carriers for the first time. The obtained NGO‐PEG‐OCT complex shows low toxicity and excellent stability in vivo and is able to achieve somatostatin receptor‐mediated tumor‐specific targeting delivery. Owing to the high loading efficiency and accurate targeting delivery of anti‐cancer drug doxorubicin (DOX), our DOX loaded NGO‐PEG‐OCT complex offers a remarkably improved cancer‐cell‐specific cellular uptake, chemo‐cytotoxicity, and decreased systemic toxicity compared to free DOX or NGO‐PEG. More importantly, due to its strong near‐infrared absorption, the NGO‐PEG‐OCT complex further enhances efficient photothermal ablation of tumors, delivering combined chemo and photothermal therapeutic effect against cancer cells.  相似文献   

8.
A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (-15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-Ioaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.  相似文献   

9.
Gold nanoparticles (GNPs) and modified GNPs having two kinds of functional molecules, cysteamine (AET) and thioglucose (Glu), are synthesized. Cell uptake and radiation cytotoxicity enhancement in a breast-cancer cell line (MCF-7) versus a nonmalignant breast-cell line (MCF-10A) are studied. Transmission electron microscopy (TEM) results show that cancer cells take up functional Glu-GNPs significantly more than naked GNPs. The TEM results also indicate that AET-capped GNPs are mostly bound to the MCF-7 cell membrane, while Glu-GNPs enter the cells and are distributed in the cytoplasm. After MCF-7 cell uptake of Glu-GNPs, or binding of AET-GNPs, the in vitro cytotoxicity effects are observed at 24, 48, and 72 hours. The results show that these functional GNPs have little or no toxicity to these cells. To validate the enhanced killing effect on cancer cells, various forms of radiation are applied such as 200 kVp X-rays and gamma-rays, to the cells, both with and without functional GNPs. By comparison with irradiation alone, the results show that GNPs significantly enhance cancer killing.  相似文献   

10.
Abstract

One strategy for cancer treatment is combination therapy using nanoparticles (NPs), which has resulted in enhanced anti-cancer effects and reduced cytotoxicity of therapeutic agents. Polyamidoamine dendrimer (PAMAM) has attracted considerable attention because of its potential applications ranging from drug delivery to molecular encapsulation and gene therapy. In this study, PAMAM G5 modified with cholesteryl chloroformate and alkyl-PEG was applied for co-delivery of doxorubicin (DOX) and plasmid encoding TRAIL into colon cancer cells, in vitro and in vivo. The results showed DOX was efficiently encapsulated in modified carrier (M-PAMAM) with loading level about 90%, and the resulting DOX-loaded M-PAMAM complexed with TRAIL plasmid showed much stronger antitumor effect than M-PAMAM containing DOX or TRAIL plasmid. On the other hand, the obtained results demonstrated that the treatment of mice bearing C26 colon carcinoma with this developed co-delivery system significantly decreased tumor growth rate. Thus, this modified PAMAM G5 can be considered as a potential carrier for co-delivery of drug and gene in cancer therapy.  相似文献   

11.
Background: Dioscin has shown cytotoxicity against cancer cells, but its poor solubility and stability have limited its clinical application. In this study, we designed mixed micelles composed of TPGS and Soluplus® copolymers entrapping the poorly soluble anticancer drug dioscin.

Method: In order to improve the aqueous solubility and bioactivity of dioscin, TPGS/Soluplus® mixed micelles with an optimal ratio were prepared using a thin-film hydration method, and their physicochemical properties were characterized. Cellular cytotoxicity and uptake of the dioscin-loaded TPGS/Soluplus® mixed micelles were studied in MCF-7 breast cancer cells and A2780s ovarian cancer cells. The pharmacokinetics of free dioscin and dioscin-loaded TPGS/Soluplus® mixed micelles was studied in vivo in male Sprague-Dawley rats via a single intravenous injection in the tail vein.

Results: The average size of the optimized mixed micelle was 67.15?nm, with 92.59% drug encapsulation efficiency and 4.63% drug loading efficiency. The in vitro release profile showed that the mixed micelles presented sustained release behavior compared to the anhydrous ethanol solution of dioscin. In vitro cytotoxicity assays were conducted on human cancer cell lines including A2780s ovarian cancer cells and MCF-7 breast cancer cells. The mixed micelles exhibited better antitumor activity compared to free dioscin against all cell lines, which may benefit from the significant increase in the cellular uptake of dioscin from mixed micelles compared to free dioscin. The pharmacokinetic study showed that the mixed micelle formulation achieved a 1.3 times longer mean residual time (MRT) in circulation and a 2.16 times larger area under the plasma concentration–time curve (AUC) than the free dioscin solution.

Conclusion: Our results suggest that the dioscin-loaded mixed micelles developed in this study might be a potential nano drug-delivery system for cancer chemotherapy.  相似文献   

12.
To develop an appropriate carrier for intratumoral drug delivery, cetyltrimethylammonium bromide (CTAB) modified nanoemulsome (CTAB-NES) was designed and prepared by solvent evaporation method. Coumarin-6 was chosen as the fluorescent probe and the conventional nanoemulsome (NES) without CTAB modification served as a control. The results demonstrated that CTAB-NES had a smaller particle size of 71.9 +/- 4.32 nm, considerate positive zeta potential of +48.7 +/- 0.2 mV, preferably entrapment efficiency of 97.483 +/- 0.693% and the release of coumarin-6 in 24 h was little. The in vitro cytotoxicity of CTAB-NES to the CHO cells and MCF-7 cells increased consistently with concentrations and was higher than that of NES, especially to the cancer cells. Both the fluorescence microscopy images and HPLC assay verified that the cellular uptake of CTAB-NES in MCF-7 cells was much higher than that of NES, and the uptake was time-, concentration- and temperature- dependent. The uptake mechanism results demonstrated that the internalization of CTAB-NES and NES involved clathrin- and caveolae-mediated endocytosis while macropinocytosis only influenced the uptake of CTAB-NES in MCF-7 cells for CTAB could mediate adsorptive pinocytosis. Thus, CTAB-NES with high positive charge and good intracellular uptake ability could be a promising drug carrier for intratumoral drug delivery.  相似文献   

13.
This study aimed to develop novel galactosylated cholesterol modified-glycol chitosan (Gal-CHGC) micelles for targeting delivery of doxorubicin (DOX) in live cancer cells. Three kinds of Gal-CHGC conjugates were synthesized and characterized. The mean particle size and critical aggregation concentration of these polymeric micelles increased with the increase of galactose substitution degree. The DOX-loaded micelles were prepared by an o/w method. The mean diameters of DOX-loaded galactosylated micelles were in the range of 387–497 nm. DOX released from drug-loaded micelles displayed a biphasic way. Cellular uptake studies demonstrated that DOX-loaded galactosylated micelles could enhance the uptake of DOX into HepG2 cells. Moreover, the cytotoxicity of DOX-loaded galactosylated micelles against HepG2 cells significantly improved in contrast with free DOX and DOX-loaded micelles without galactosylation. These results suggested that Gal-CHGC micelles could be a potential carrier for hepatoma-targeting drug delivery.  相似文献   

14.
《Nano Research》2016,(8):2424-2432
Short in vivo circulation is a major hindrance to the widespread adoption of protein therapeutics.Protein nanocapsules generated by encapsulating proteins with a thin layer of phosphorylcholine-based polymer via a two-step encapsulation process exhibited significantly prolonged plasma half-life.Furthermore,by constructing nanocapsules with similar sizes but different surface charges and chemistry,we demonstrated a generic strategy for prolonging the plasma half-life of therapeutic proteins.In an in vitro experiment,four types of bovine serum albumin (BSA) nanocapsules were incubated with fetal bovine serum (FBS) in phosphate buffer saline (PBS);the cell uptake by HeLa cells was monitored to systematically evaluate the characteristics of the surface chemistry during drculation.Single positron emission tomography-computed tomography (SPECT)was employed to allow real-time observation of the BSA nanoparticle distribution in vivo,as well as quantification of the plasma concentration after intravenous administration.This study offers a practical method for translating a broad range of proteins for clinical use.  相似文献   

15.
PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val, PV7), a seven amino acid peptide, has emerged as one of the primary nuclear localization signals that can be targeted into cell nucleus via the nuclear import machinery. Taking advantage of chemical diversity and biological activities of this short peptide sequence, in this study, Pluronic F127 nanomicelles engineered with nuclear localized functionality were successfully developed for intracellular drug delivery. These nanomicelles with the size ~ 100 nm were self-assembled from F127 polymer that was flanked with two PV7 sequences at its both terminal ends. Hydrophobic anticancer drug doxorubicin (DOX) with inherent fluorescence was chosen as the model drug, which was found to be efficiently encapsulated into nanomicelles with the encapsulation efficiency at 72.68%. In comparison with the non-functionalized namomicelles, the microscopic observation reveals that PV7 functionalized nanomicelles display a higher cellular uptake, especially into the nucleus of HepG2 cells, due to the nuclear localization signal effects. Both cytotoxicity and apoptosis studies show that the DOX-loaded nanomicelles were more potent than drug nanomicelles without nuclear targeting functionality. It was thus concluded that PV7 functionalized nanomicelles could be a potentially alternative vehicle for nuclear targeting drug delivery.  相似文献   

16.
The amphiphilic block copolymers methoxy poly(ethylene glycol)-poly(epsilon-caprolactone) was grafted to 2-hydroxyethyl cellulose to produce the water-soluble copolymers. Doxorubicin loaded nanoparticles were prepared by dialysis method and the sizes of nanoparticles were determined by dynamic light scattering in solution and atomic force microscopes. As results the sizes were detected in a range of 197.4 to 340.7 nm. The in-vitro release of Dox was studied in phosphate and acetate buffered solution at 37 degrees C. The results showed that 43 and 53% of Dox remained after an incubation period of 7 days. The cytotoxicity of Dox loaded micelles was investigated in two different human MCF-7/wild type and MCF-7/Adriamycin drug resistant cells lines. The Dox-loaded micelles showed reduced cytotoxicity compared to free Dox in MCF-7/wild type and MCF-7/Adriamycin drug resistant cells.  相似文献   

17.
You J  Hu FQ  Du YZ  Yuan H 《Nanotechnology》2008,19(25):255103
For antitumor drugs with an intracellular action site in the nucleus, effective internalization of the drugs into cancer cells and accumulation in the nucleus should be the determinant step for high antitumor activity. We synthesized a novel chitosan derivative by grafting stearic acid onto chitosan. The derivative can form self-aggregated micelles with about 50?nm size in the aqueous medium, and then can load a poorly soluble antitumor drug (doxorubicin, DOX) with high entrapment efficiency and drug loading. DOX release from the micelles was retarded significantly as a result of the encapsulation of the micelles. DOX concentration in nuclei was increased significantly via the transport of the micelles. Consequently, cytotoxicity of DOX loaded micelles was improved sharply due to the accumulation of the drug in its intracellular action site. The present micelles are a promising carrier candidate for effective therapy of antitumor drugs with the action site in the nucleus.  相似文献   

18.
Fan J  Fang G  Wang X  Zeng F  Xiang Y  Wu S 《Nanotechnology》2011,22(45):455102
A targeted anticancer prodrug system was fabricated with 180?nm mesoporous silica nanoparticles (MSNs) as carriers. The anticancer drug doxorubicin (DOX) was conjugated to the particles through an acid-sensitive carboxylic hydrazone linker which is cleavable under acidic conditions. Moreover, folic acid (FA) was covalently conjugated to the particle surface as the targeting ligand for folate receptors (FRs) overexpressed in some cancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systems showed a strong dependence on the environmental pH values. The fluorescent dye FITC was incorporated in the MSNs so as to trace the cellular uptake on a fluorescence microscope. Cellular uptakes by HeLa, A549 and L929 cell lines were tested for FA-conjugated MSNs and plain MSNs respectively, and a much more efficient uptake by FR-positive cancer cells (HeLa) can be achieved by conjugation of folic acid onto the particles because of the folate-receptor-mediated endocytosis. The cytotoxicities for the FA-conjugated MSN prodrug, the plain MSN prodrug and free DOX against three cell lines were determined, and the result indicates that the FA-conjugated MSN prodrug exhibits higher cytotoxicity to FR-positive cells, and reduced cytotoxicity to FR-negative cells. Thus, with 180?nm MSNs as the carriers for the prodrug system, good drug loading, selective targeting and sustained release of drug molecules within targeted cancer cells can be realized. This study may provide useful insights for designing and improving the applicability of MSNs in targeted anticancer prodrug systems.  相似文献   

19.
Rattle‐type Fe3O4@SiO2 hollow mesoporous spheres with different particle sizes, different mesoporous shell thicknesses, and different levels of Fe3O4 content are prepared by using carbon spheres as templates. The effects of particle size and concentration of Fe3O4@SiO2 hollow mesoporous spheres on cell uptake and their in vitro cytotoxicity to HeLa cells are evaluated. The spheres exhibit relatively fast cell uptake. Concentrations of up to 150 µg mL?1 show no cytotoxicity, whereas a concentration of 200 µg mL?1 shows a small amount of cytotoxicity after 48 h of incubation. Doxorubicin hydrochloride (DOX), an anticancer drug, is loaded into the Fe3O4@SiO2 hollow mesoporous spheres, and the DOX‐loaded spheres exhibit a somewhat higher cytotoxicity than free DOX. These results indicate the potential of Fe3O4@SiO2 hollow mesoporous spheres for drug loading and delivery into cancer cells to induce cell death.  相似文献   

20.
A majority of the photo‐responsive drug‐delivery systems that are currently being studied require a complicated synthesis method. Here, we prepare a near‐infrared responsive, photothermally controllable, drug‐delivery carrier by a simple mixing and extraction process without the incorporation of toxic chemicals. A blend of doxorubicin (DOX), an anticancer drug, and a phase‐change material (PCM) are loaded onto the mesoporous structure of silica‐coated graphene oxide (GO@MS) to form a waffle‐like structure, which is confirmed by various physicochemical analyses. The cytotoxicity of DOX/PCM‐loaded GO@MS (DOX/PCM‐GO@MS) against HeLa cells is 50 times higher than that of free DOX, and this improved activity can be attributed to the photothermal effectiveness of GO@MS. Additionally, the cytotoxicity and uptake mechanism of the PCM‐based material are analyzed by flow cytometry. Taken together, our results suggest an enormous potential for spatio‐temporal control in photothermally responsive drug‐delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号