首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, growing concerns regarding energy efficiency and heat mitigation, along with the critical goal of carbon neutrality, have drawn human attention to the zero-energy-consumption cooling technique. Passive daytime radiative cooling (PDRC) can be an invaluable tool for combating climate change by dispersing ambient heat directly into outer space instead of just transferring it across the surface. Although significant progress has been made in cooling mechanisms, materials design, and application exploration, PDRC faces challenges regarding functionality, durability, and commercialization. Herein, a silica nanofiber aerogels (SNAs) functionalized poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-HFP)) membrane (SFP membrane), inspired by constructional engineering is constructed. As-prepared membranes with flexible network structure combined hierarchical structure design and practicability principal. As the host material for thermal comfort management (TCM) and versatile protection, the SFP membrane features a large surface area, porous structure, and a robust skeleton that can render excellent mechanical properties. Importantly, the SFP membrane can keep exceptional solar reflectivity (0.95) and strong mid-infrared emittance (0.98) drop the temperature to 12.5 °C below ambient and 96 W m−2 cooling power under typical solar intensities over 910 W m−2. This work provides a promising avenue for high performance aerogel membranes that can be created for use in a wide variety of applications.  相似文献   

2.
The exploration of the utilization of sustainable, green energy represents one way in which it is possible to ameliorate the growing threat of the global environmental issues and the crisis in energy. Moisture, which is ubiquitous on Earth, contains a vast reservoir of low-grade energy in the form of gaseous water molecules and water droplets. It has now been found that a number of functionalized materials can generate electricity directly from their interaction with moisture. This suggests that electrical energy can be harvested from atmospheric moisture and enables the creation of a new range of self-powered devices. Herein, the basic mechanisms of moisture-induced electricity generation are discussed, the recent advances in materials (including carbon nanoparticles, graphene materials, metal oxide nanomaterials, biofibers, and polymers) for harvesting electrical energy from moisture are summarized, and some strategies for improving energy conversion efficiency and output power in these devices are provided. The potential applications of moisture electrical generators in self-powered electronics, healthcare, security, information storage, artificial intelligence, and Internet-of-things are also discussed. Some remaining challenges are also considered, together with a number of suggestions for potential new developments of this emerging technology.  相似文献   

3.
Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio‐integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed.  相似文献   

4.
Multifunctional Energy Storage and Conversion Devices   总被引:1,自引:0,他引:1       下载免费PDF全文
Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self‐healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state‐of‐art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application.  相似文献   

5.
低温冷冻保存是细胞治疗、辅助生殖等生物医学应用的使能技术之一.冷冻和复苏过程中,胞内外冰晶的形成和生长会对细胞产生损伤;其中,升降温速率又与冰晶的形成、生长有密切关系.本文在阐述程序化慢速冷冻和玻璃化快速冷冻两种细胞冻存方式及冷冻损伤两因素假说的基础上,对细胞特性、细胞外环境和升降温策略三个影响细胞冻存效果的要素进行分...  相似文献   

6.
Implantable bioelectronics represent an emerging technology that can be integrated into the human body for diagnostic and therapeutic functions. Power supply devices are an essential component of bioelectronics to ensure their robust performance. However, conventional power sources are usually bulky, rigid, and potentially contain hazardous constituent materials. The fact that biological organisms are soft, curvilinear, and have limited accommodation space poses new challenges for power supply systems to minimize the interface mismatch and still offer sufficient power to meet clinical‐grade applications. Here, recent advances in state‐of‐the‐art nonconventional power options for implantable electronics, specifically, miniaturized, flexible, or biodegradable power systems are reviewed. Material strategies and architectural design of a broad array of power devices are discussed, including energy storage systems (batteries and supercapacitors), power devices which harvest sources from the human body (biofuel cells, devices utilizing biopotentials, piezoelectric harvesters, triboelectric devices, and thermoelectric devices), and energy transfer devices which utilize sources in the surrounding environment (ultrasonic energy harvesters, inductive coupling/radiofrequency energy harvesters, and photovoltaic devices). Finally, future challenges and perspectives are given.  相似文献   

7.
Porous Janus materials have attracted widespread attention due to their asymmetry in wettability, charge, pore size or structure, thermal/electrical conductivity, and chemical activity. Multifunction integration and unique directional manipulation of liquid, ion, or gas within porous Janus materials enable rapid progress in diverse applications such as fog collection, personal moisture and healthcare management, energy conversion, water purification, sensor devices, and biomedical applications. Compared with conventional homogeneous materials, porous Janus materials not only showcase superior performance and energetic potential but also open up new applications by virtue of the synergistic or independent effects of asymmetry. This comprehensive review systematically analyzes the research progress of porous Janus materials, highlighting fabrication strategies, synergistic/independent work mechanisms, and emerging advanced applications. Finally, ongoing challenges and outlook for the future research of porous Janus materials are presented.  相似文献   

8.
This paper gives a comprehensive review on recent developments and the previous research studies on cold thermal energy storage using phase change materials (PCM). Such commercially available PCMs having the potential to be used as material for cold energy storage are categorised and listed with their melting point and latent heat of fusion. Also techniques for improving the thermo-physical properties of PCM such as heat transfer enhancement, encapsulation, inclusion of nanostructures and shape stabilization are reviewed. The effect of stability due to the corrosion of construction materials is also reported. Finally, different applications where the PCM can be employed for cold energy storage such as free cooling of building, air-conditioning, refrigerated trucks and cold packing are discussed.  相似文献   

9.
The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy‐harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed.  相似文献   

10.
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next‐generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural‐biomaterial‐derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high‐performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon‐based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.  相似文献   

11.
Eutectic gallium–indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.  相似文献   

12.
Triboelectric nanogenerators (TENGs), as a new energy conversion device in self-powered sensing devices, have been used at extreme environmental conditions, which poses great challenges to the structural stability and chemical tolerance of triboelectric materials. However, the low tolerance characteristics of traditional triboelectric materials limit their expansion in emerging applications. Cellulose, with its unique multidimensional structure and, controlled surface chemistry regulation advantages, shows great potential in resisting extreme environmental conditions and is emerging as a new candidate. This review aims to design and fabricate cellulosic triboelectric materials with exceptional tolerance, providing a perspective on the emerging applications of TENGs at extreme environmental conditions. First, the performance advantages and design principles of action of cellulosic triboelectric materials at extreme environmental conditions are described. Second, the importance of physical and chemical regulation strategies is discussed through the multi-scale perspective from macroscopic fiber bundles to microscopic cellulose molecules. It also presents the latest applications of cellulosic triboelectric materials at extreme environmental conditions such as wide temperature, high humidity, high corrosion, and radiation. Finally, the idea of how cellulosic triboelectric materials can further expand the development of TENGs application areas is presented.  相似文献   

13.
The urgent need for ecofriendly, stable, long‐lifetime power sources is driving the booming market for miniaturized and integrated electronics, including wearable and medical implantable devices. Flexible thermoelectric materials and devices are receiving increasing attention, due to their capability to convert heat into electricity directly by conformably attaching them onto heat sources. Polymer‐based flexible thermoelectric materials are particularly fascinating because of their intrinsic flexibility, affordability, and low toxicity. There are other promising alternatives including inorganic‐based flexible thermoelectrics that have high energy‐conversion efficiency, large power output, and stability at relatively high temperature. Herein, the state‐of‐the‐art in the development of flexible thermoelectric materials and devices is summarized, including exploring the fundamentals behind the performance of flexible thermoelectric materials and devices by relating materials chemistry and physics to properties. By taking insights from carrier and phonon transport, the limitations of high‐performance flexible thermoelectric materials and the underlying mechanisms associated with each optimization strategy are highlighted. Finally, the remaining challenges in flexible thermoelectric materials are discussed in conclusion, and suggestions and a framework to guide future development are provided, which may pave the way for a bright future for flexible thermoelectric devices in the energy market.  相似文献   

14.
Passive daytime radiative cooling (PDRC) is a promising strategy to realize surface cooling of objects without any external energy consumption. While such materials typically exhibit dazzling white appearances, developing pleasingly looking colored radiative cooling materials is greatly significant but remains an arduous challenge. Herein, self-standing, flexible colored films available on both sides are prepared by using a facile and scalable strategy. The films are asymmetrically designed. One side is SiO2-filled porous structure with highly reflective pigment distributed that can selectively reflect solar light to generate specific color, and the other side is hierarchically porous three-phase composite with less SiO2, which maximizes the solar reflection. The breathable film achieves a relatively high near infrared reflectance on the colored side (up to 89%), and a broadband solar reflectance on the reverse side. Moreover, both sides exhibit extremely high mid-infrared emissivity (98%) allowing significant radiative heat loss. With the diverse but efficient reflectance and emittance, different sides of three colored films yield temperature drops ranging from 2.0 to 11.1 °C during daytime. Building energy simulation indicates that 655 MJ m−2 energy can be saved over the whole summer if the dual-sided available colored film is deployed in China.  相似文献   

15.
Hydrogen has emerged as an environmentally attractive fuel and a promising energy carrier for future applications to meet the ever-increasing energy challenges. The safe and efficient storage and release of hydrogen remain a bottleneck for realizing the upcoming hydrogen economy. Hydrogen storage based on liquid-phase chemical hydrogen storage materials is one of the most promising hydrogen storage techniques, which offers considerable potential for large-scale practical applications for its excellent safety, great convenience, and high efficiency. Recently, nanopore-supported metal nanocatalysts have stood out remarkably in boosting the field of liquid-phase chemical hydrogen storage. Herein, the latest research progress in catalytic hydrogen production is summarized, from liquid-phase chemical hydrogen storage materials, such as formic acid, ammonia borane, hydrous hydrazine, and sodium borohydride, by using metal nanocatalysts confined within diverse nanoporous materials, such as metal–organic frameworks, porous carbons, zeolites, mesoporous silica, and porous organic polymers. The state-of-the-art synthetic strategies and advanced characterizations for these nanocatalysts, as well as their catalytic performances in hydrogen generation, are presented. The limitation of each hydrogen storage system and future challenges and opportunities on this subject are also discussed. References in related fields are provided, and more developments and applications to achieve hydrogen energy will be inspired.  相似文献   

16.
Chen  Haoyun  Yuan  Xingzhong  Wang  Hou  Yu  Hanbo  Jiang  Longbo 《Journal of Materials Science》2021,56(25):13875-13924

Nanostructured covalent organic frameworks (COFs) have attracted great attentions over the past few decades due to their unique physical and chemical properties. Crystallization is sought in many application fields since it allows enhancing or even promoting properties of catalysis, energy storage and photoelectric properties. However, the crystallization process of nanostructured COFs remains to be challenging. Synthetic approaches to establish nucleation and elongation growth of COFs for controlling crystallization have drawn substantial amount of attentions. Nanostructured COFs have exhibited significant advantages when applied in (electro)photocatalysis and energy storage devices as well. In this review, recent progress in precisely design strategy of fabricating various nanostructured COFs and their applications as (electro)photocatalyzer and energy storage devices are summarized. After a brief introduction of the design principles, composition and interior architecture, the morphology of nanostructured COFs including porous and mesoporous stacked-layer structure, nanosheet structure, nanorod structure, ordered stripe arrays and various nanocomposites are thoroughly described. Reactions dedicated to crystallization process for two-dimensional (2D) COFs are discussed further. Then, the applications of nanostructured COFs as (electro)photocatalysis and energy storage devices are demonstrated. Finally, the potential advantages and challenges for the synthetic technology of nanostructured COFs materials are particularly discussed. Personal insights into the challenges and opportunities on pursuing topologies as hollow structures, dense spheres, yolk–shell structures were raised to broaden the applications.

  相似文献   

17.
Lead chalcogenides have long been used for space‐based and thermoelectric remote power generation applications, but recent discoveries have revealed a much greater potential for these materials. This renaissance of interest combined with the need for increased energy efficiency has led to active consideration of thermoelectrics for practical waste heat recovery systems—such as the conversion of car exhaust heat into electricity. The simple high symmetry NaCl‐type cubic structure, leads to several properties desirable for thermoelectricity, such as high valley degeneracy for high electrical conductivity and phonon anharmonicity for low thermal conductivity. The rich capabilities for both band structure and microstructure engineering enable a variety of approaches for achieving high thermoelectric performance in lead chalcogenides. This Review focuses on manipulation of the electronic and atomic structural features which makes up the thermoelectric quality factor. While these strategies are well demonstrated in lead chalcogenides, the principles used are equally applicable to most good thermoelectric materials that could enable improvement of thermoelectric devices from niche applications into the mainstream of energy technologies.  相似文献   

18.
Bismuth(Bi)-based materials have gained considerable attention in recent decades for use in a diverse range of sustainable energy and environmental applications due to their low toxicity and eco-friendliness. Bi materials are widely employed in electrochemical energy storage and conversion devices, exhibiting excellent catalytic and non-catalytic performance, as well as CO2/N2 reduction and water treatment systems. A variety of Bi materials, including its oxides, chalcogenides, oxyhalides, bismuthates, and other composites, have been developed for understanding their physicochemical properties. In this review, a comprehensive overview of the properties of individual Bi material systems and their use in a range of applications is provided. This review highlights the implementation of novel strategies to modify Bi materials based on morphological and facet control, doping/defect inclusion, and composite/heterojunction formation. The factors affecting the development of different classes of Bi materials and how their control differs between individual Bi compounds are also described. In particular, the development process for these material systems, their mass production, and related challenges are considered. Thus, the key components in Bi compounds are compared in terms of their properties, design, and applications. Finally, the future potential and challenges associated with Bi complexes are presented as a pathway for new innovations.  相似文献   

19.
Carbon nanotubes (CNTs) possess excellent electrical, thermal and mechanical properties. They are light in weight yet stronger than most of the other materials. They can be made both highly conductive and semi-conductive. They can be made from nano-sized small catalyst particles and extend to tens of millimeters long. Since CNTs emerged as a hot topic in the early 1990s, numerous research efforts have been spent on the study of the various properties of this new material. CNTs have been proposed as alternative materials of potential excellence in a lot of applications such as electronics, chemical sensors, mechanical sensors/actuators and composite materials, etc. This paper reviews the use of CNTs particularly in electronics manufacturing and packaging
field. The progresses of three most important applications, including CNT-based thermal interface materials, CNT-based interconnections and CNT-based cooling devices are reviewed. The growth and post-growth processing of CNTs for specific applications are introduced and the tailoring of CNTs properties, i.e., electrical resistivity, thermal  conductivity and strength, etc., is discussed with regard to specific application requirement. As the semiconductor industry is still driven by the need of getting smaller and faster, CNTs and the related composite systems as emerging new materials are likely to provide the solution to the future challenges as we make more and more complex electronics devices and systems.  相似文献   

20.
Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast‐emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon‐based materials can function as catalysts for the oxygen‐reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon‐based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon‐electrode‐based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号