首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio‐integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed.  相似文献   

2.
Mesoporous materials have attracted considerable attention because of their distinctive properties, including high surface areas, large pore sizes, tunable pore structures, controllable chemical compositions, and abundant forms of composite materials. During the last decade, there has been increasing research interest in constructing advanced mesoporous nanomaterials possessing short and open channels with efficient mass diffusion capability and rich accessible active sites for electrochemical energy conversion and storage. Here, the synthesis, structures, and energy-related applications of mesoporous nanomaterials are the main focus. After a brief summary of synthetic methods of mesoporous nanostructures, the delicate design and construction of mesoporous nanomaterials are described in detail through precise tailoring of the particle sizes, pore sizes, and nanostructures. Afterward, their applications as electrode materials for lithium-ion batteries, supercapacitors, water-splitting electrolyzers, and fuel cells are discussed. Finally, the possible development directions and challenges of mesoporous nanomaterials for electrochemical energy conversion and storage are proposed.  相似文献   

3.
2D genuine unilamellar nanosheets, that are, the elementary building blocks of their layered parent crystals, have gained increasing attention, owing to their unique physical and chemical properties, and 2D features. In parallel with the great efforts to isolate these atomic-thin crystals, a unique strategy to integrate them into 2D vertically stacked heterostuctures has enabled many functional applications. In particular, such 2D heterostructures have recently exhibited numerous exciting electrochemical performances for energy storage and conversion, especially the molecular-scale heteroassembled superlattices using diverse 2D unilamellar nanosheets as building blocks. Herein, the research progress in scalable synthesis of 2D superlattices with an emphasis on a facile solution-phase flocculation method is summarized. A particular focus is brought to the advantages of these 2D superlattices in applications of supercapacitors, rechargeable batteries, and water-splitting catalysis. The challenges and perspectives on this promising field are also outlined.  相似文献   

4.
5.
Additive manufacturing has revolutionized the building of materials, and 3D-printing has become a useful tool for complex electrode assembly for batteries and supercapacitors. The field initially grew from extrusion-based methods and quickly evolved to photopolymerization printing, while supercapacitor technologies less sensitive to solvents more often involved material jetting processes. The need to develop higher-resolution multimaterial printers is borne out in the performance data of recent 3D printed electrochemical energy storage devices. Underpinning every part of a 3D-printable battery are the printing method and the feed material. These influence material purity, printing fidelity, accuracy, complexity, and the ability to form conductive, ceramic, or solvent-stable materials. The future of 3D-printable batteries and electrochemical energy storage devices is reliant on materials and printing methods that are co-operatively informed by device design. Herein, the material and method requirements in 3D-printable batteries and supercapacitors are addressed and requirements for the future of the field are outlined by linking existing performance limitations to requirements for printable energy-storage materials, casings, and direct printing of electrodes and electrolytes. A guide to materials and printing method choice best suited for alternative-form-factor energy-storage devices to be designed and integrated into the devices they power is thus provided.  相似文献   

6.
The unique electronic and structural properties of 2D materials have triggered wide research interest in catalysis. The lattice of 2D materials and the interface between 2D covers and other substrates provide intriguing confinement environments for active sites, which has stimulated a rising area of “confinement catalysis with 2D materials.” Fundamental understanding of confinement catalysis with 2D materials will favor the rational design of high‐performance 2D nanocatalysts. Confinement catalysis with 2D materials has found extensive applications in energy‐related reaction processes, especially in the conversion of small energy‐related molecules such as O2, CH4, CO, CO2, H2O, and CH3OH. Two representative strategies, i.e., 2D lattice‐confined single atoms and 2D cover‐confined metals, have been applied to construct 2D confinement catalytic systems with superior catalytic activity and stability. Herein, the recent advances in the design, applications, and structure–performance analysis of two 2D confinement catalytic systems are summarized. The different routes for tuning the electronic states of 2D confinement catalysts are highlighted and perspectives on confinement catalysis with 2D materials toward energy conversion and utilization in the future are provided.  相似文献   

7.
2D materials have captured much recent research interest in a broad range of areas, including electronics, biology, sensors, energy storage, and others. In particular, preparing 2D nanosheets with high quality and high yield is crucial for the important applications in energy storage and conversion. Compared with other prevailing synthetic strategies, the electrochemical exfoliation of layered starting materials is regarded as one of the most promising and convenient methods for the large-scale production of uniform 2D nanosheets. Here, recent developments in electrochemical delamination are reviewed, including protocols, categories, principles, and operating conditions. State-of-the-art methods for obtaining 2D materials with small numbers of layers—including graphene, black phosphorene, transition metal dichalcogenides and MXene—are also summarized and discussed in detail. The applications of electrochemically exfoliated 2D materials in energy storage and conversion are systematically reviewed. Drawing upon current progress, perspectives on emerging trends, existing challenges, and future research directions of electrochemical delamination are also offered.  相似文献   

8.
Chiral materials are widely applied in various fields such as enantiomeric separation, asymmetric catalysis, and chiroptical effects, providing stereospecific conditions and environments. Supramolecular concepts to create the chiral materials can provide an insight for emerging chiro-optical properties due to their well-defined scaffolds and the precise functionalization of the surfaces or skeletons. Among the various supramolecular chiral structures, 2D chiral sheet structures are particularly interesting materials because of their extremely high surface area coupled with many unique chemical and physical properties, thereby offering potential for the next generation of functional materials for optically active systems and optoelectronic devices. Nevertheless, relatively limited examples for 2D chiral materials exhibiting specific functionality have been reported because incorporation of molecular chirality into 2D architectures is difficult at the present stage. Here, a brief overview of the recent advances is provided on the construction of chiral supramolecular 2D materials and their functions. The design principles toward 2D chirality and their potential applications are also discussed.  相似文献   

9.
10.
Metal–organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF‐based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy‐related applications of complex nanostructures derived from MOF‐based precursors is provided. After a brief summary of synthetic methods of MOF‐based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single‐shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium‐ion batteries, hybrid supercapacitors, water‐splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF‐based‐templates for electrochemical energy storage and conversion applications are outlined.  相似文献   

11.
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high‐performance hydrogen storage materials for on‐board applications and electrochemical energy storage materials for lithium‐ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano‐/microcombination, hybridization, pore‐structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.  相似文献   

12.
金属-有机框架(MOFs)是一类由金属离子/团簇和有机配体通过配位形成的具有多孔结构的无机-有机杂化材料。MOFs具有比表面积高、孔径均一、结构可调等优点,受到了人们的广泛关注。然而,MOFs的导电性和稳定性较差,制约了其应用的进一步拓展。以MOFs作为前驱体,通过水热反应或煅烧得到组成、形貌、结构可调的MOFs衍生材料,既能够保持MOFs材料结构多样性和多孔性的特点,又能有效提高其导电性和稳定性,近年来已成为该领域的研究热点。然而,MOFs衍生材料单一的组成和结构,使其能够提供的性能(如电容性能、催化性能)有限,极大地限制了其相关应用的发展。因此,近几年除了研究制备各种不同MOFs衍生材料外,研究者们主要从MOFs衍生材料的组成和结构方面出发,制备出多样化且在各方面应用中(如储能器件、催化)表现出优异性能的材料。MOFs衍生材料作为性能优异的应用型材料,其研究较为成熟的组成和结构分别主要包括多孔碳、金属氧化物、金属硫化物、金属磷化物、金属氢氧化物以及纤维状结构、中空结构、核壳结构等。MOFs衍生材料不仅具有高的比表面积、均一的孔径分布,通常还结合了衍生多孔碳的高导电性及其他衍生材料(金属化合物或掺杂的金属原子及杂原子,如N、P、S等)的优异性能(如电容性能、催化性能),从而发挥出更加优异的性能。其中,MOFs衍生金属化合物材料具备多孔结构,能够提供优异的容量性能及催化性能等,且其性能通常优于通过其他方法制备得到的同种材料。从结构方面出发,近几年,研究者们通过调控前驱体结构亦或是反应条件,制备得到多种不同结构的MOFs衍生材料。一方面,部分制备得到的结构(如核壳结构、中空结构)可以缓解MOFs衍生材料在使用过程中所受到的冲击,从而表现出优异的循环性能。另一方面,通过调控MOFs衍生材料的结构,使其活性位点得到充分的暴露,从而使其性能得到最大化的发挥。本文综述了MOFs衍生材料的研究进展,包括组成特点、结构调控,及其在储能器件、催化领域的应用,最后阐述了MOFs衍生材料研究领域当前面临的挑战以及未来的发展前景。  相似文献   

13.
Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2-caused climate hazards and ever-increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high-efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo-anode-assisted ECR systems and bio-anode-assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.  相似文献   

14.
Organic electrode materials are of long‐standing interest for next‐generation sustainable lithium‐ion batteries (LIBs). As a promising cathode candidate, imide compounds have attracted extensive attention due to their low cost, high theoretical capacity, high working voltage, and fast redox reaction. However, the redox active site utilization of imide electrodes remains challenging for them to fulfill their potential applications. Herein, the synthesis of a highly stable, crystalline 2D polyarylimide (2D‐PAI) integrated with carbon nanotube (CNT) is demonstrated for the use as cathode material in LIBs. The synthesized polyarylimide hybrid (2D‐PAI@CNT) is featured with abundant π‐conjugated redox‐active naphthalene diimide units, a robust cyclic imide linkage, high surface area, and well‐defined accessible pores, which render the efficient utilization of redox active sites (82.9%), excellent structural stability, and fast ion diffusion. As a consequence, high rate capability and ultrastable cycle stability (100% capacity retention after 8000 cycles) are achieved in the 2D‐PAI@CNT cathode, which far exceeds the state‐of‐the‐art polyimide electrodes. This work may inspire the development of novel organic electrodes for sustainable and durable rechargeable batteries.  相似文献   

15.
2D materials are important building blocks for the upcoming generation of nanostructured electronics and multifunctional devices due to their distinct chemical and physical characteristics. To this end, large-scale production of 2D materials with high purity or with specific functionalities represents a key to advancing fundamental studies as well as industrial applications. Among the state-of-the-art synthetic protocols, electrochemical exfoliation of layered materials is a very promising approach that offers high yield, great efficiency, low cost, simple instrumentation, and excellent up-scalability. Remarkably, playing with electrochemical parameters not only enables tunable material properties but also increases the material diversities from graphene to a wide spectrum of 2D semiconductors. Here, a succinct and critical survey of the recent progress in this research direction is presented, comprising the strategic design, exfoliation principles, underlying mechanisms, processing techniques, and potential applications of 2D materials. At the end of the discussion, the emerging trends, challenges, and opportunities in real practice are also highlighted.  相似文献   

16.
Metal–organic frameworks (MOFs) are composed of particles with 3D geometry and are currently among the most widely studied heterogeneous catalysts. To further increase their activity, one of the recent trends is to develop related 2D materials with a high aspect ratio derived from a large lateral size and a small thickness. Here, the use of these 2D MOFs as catalysts, electrocatalysts, and photocatalysts is summarized, illustrating the advantages of these 2D materials compared to analogous 3D MOFs. The state of the art is summarized in tables and, when possible, pertinent turnover number (TON) and frequency (TOF) values. This enhanced activity of 2D MOFs derives from the accessibility of the active sites, the presence of a higher density of defects, and exchangeable coordination positions around the MOFs, as well as from their ability to form thin films on electrodes or surfaces. The importance of providing convincing evidence of the stability of 2D MOFs under reaction conditions and general characterization data of the used 2D material after catalysis is highlighted. In the last part, views regarding challenges in the field and new developments that can be expected are presented.  相似文献   

17.
Seeking sustainable and cost-effective energy sources is one of the significant challenges for the sustainable development of modern society. To date, considerable expectations have been held for technologies, such as fuel cells and electrolyzers, where the performance strongly depends on electrochemical conversion processes that can generate and store chemical energy through the breaking or formation of chemical bonds. However, those advanced technologies are severely limited by the efficiency, selectivity, and durability of electrocatalysis. Thanks to their hierarchically porous architecture, compositional and structural tunability, and ease of functionalization, the family of gel materials opens exciting opportunities for advanced energy technologies. Unique advances in gel materials based on controllable compositions and functions enable gel electrocatalysts to potentially break the limitations of current materials, enhancing the device performance of electrochemical energy. Here, recent developments and challenges for nanostructured gel-based materials for electrocatalysis applications are summarized. Future possibilities and challenges for gel electrocatalysts in terms of synthesis and applications are also discussed.  相似文献   

18.
Two-Dimensional (2D) materials have attracted immense attention in recent years. These materials have found their applications in various fields, such as catalysis, adsorption, energy storage, and sensing, as they exhibit excellent physical, chemical, electronic, photonic, and biological properties. Recently, researchers have focused on constructing porous structures on 2D materials. Various strategies, such as chemical etching and template-based methods, for the development of surface pores are reported, and the porous 2D materials fabricated over the years are used to develop supercapacitors and energy storage devices. Moreover, the lattice structure of the 2D materials can be modulated during the construction of porous structures to develop 2D materials that can be used in various fields such as lattice defects in 2D nanomaterials for enhancing biomedical performances. This review focuses on the recently developed chemical etching, solvent thermal synthesis, microwave combustion, and template methods that are used to fabricate porous 2D materials. The application prospects of the porous 2D materials are summarized. Finally, the key scientific challenges associated with developing porous 2D materials are presented to provide a platform for developing porous 2D materials.  相似文献   

19.
20.
Rational design of 2D materials is crucial for the realization of their profound implications in energy and environmental fields. The past decade has witnessed significant developments in 2D material research, yet a number of critical challenges remain for real-world applications. Nanoscale assembly, precise control over the orientational and positional ordering, and complex interfaces among 2D layers are essential for the continued progress of 2D materials, especially for energy storage and conversion and environmental remediation. Herein, recent progress, the status, future prospects, and challenges associated with nanoscopic assembly of 2D materials are highlighted, specifically targeting energy and environmental applications. Geometric dimensional diversity of 2D material assembly is focused on, based on novel assembly mechanisms, including 1D fibers from the colloidal liquid crystalline phase, 2D films by interfacial tension (Marangoni effect), and 3D nanoarchitecture assembly by electrochemical processes. Relevant critical advantages of 2D material assembly are highlighted for application fields, including secondary batteries, supercapacitors, catalysts, gas sensors, desalination, and water decontamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号