首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RAS guanyl nucleotide-releasing proteins (RASGRPs) are important proteins that act as guanine nucleotide exchange factors, which activate small GTPases and function as molecular switches for intracellular signals. The RASGRP family is composed of RASGRP1–4 proteins and activates the small GTPases, RAS and RAP. Among them, RASGRP2 has different characteristics from other RASGRPs in that it targets small GTPases and its localizations are different. Many studies related to RASGRP2 have been reported in cells of the blood cell lineage. Furthermore, RASGRP2 has also been reported to be associated with Huntington’s disease, tumors, and rheumatoid arthritis. In addition, we also recently reported RASGRP2 expression in vascular endothelial cells, and clarified the involvement of xenopus Rasgrp2 in the vasculogenesis process and multiple signaling pathways of RASGRP2 in human vascular endothelial cells with stable expression of RASGRP2. Therefore, this article outlines the existing knowledge of RASGRP2 and focuses on its expression and role in vascular endothelial cells, and suggests that RASGRP2 functions as a protective factor for maintaining healthy blood vessels.  相似文献   

3.
Obstructive sleep apnea (OSA) is known to be an independent cardiovascular risk factor. Among arousal from sleep, increased thoracic pressure and enhanced sympathetic activation, intermittent hypoxia is now considered as one of the most important pathophysiological mechanisms contributing to the development of endothelial dysfunction. Nevertheless, not much is known about blood components, which justifies the current review. This review focuses on molecular mechanisms triggered by sleep apnea. The recurrent periods of hypoxemia followed by reoxygenation promote reactive oxygen species (ROS) overproduction and increase inflammatory response. In this review paper we also intend to summarize the effect of treatment with continuous positive airway pressure (CPAP) on changes in the profile of the endothelial function and its subsequent potential clinical advantage in lowering cardiovascular risk in other comorbidities such as diabetes, atherosclerosis, hypertension, atrial fibrillation. Moreover, this paper is aimed at explaining how the presence of OSA may affect platelet function and exert effects on rheological activity of erythrocytes, which could also be the key to explaining an increased risk of stroke.  相似文献   

4.
The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.  相似文献   

5.
Oxidized low density lipoprotein (Ox-LDL) is a well-established risk factor in atherosclerosis and lysophosphatidylcholine (LysoPtdCho) is considered to be one of the major atherogenic component of Ox-LDL. The purpose of this work was to investigate the effects of two membrane n-3 long chain polyunsaturated fatty acids (n-3 PUFAs), EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) compared to n-6 PUFA, ARA (arachidonic acid), on the activation of endothelial NO synthase (eNOS) by histamine in Ea hy 926 endothelial cells incubated during 24 h in the presence or the absence of LysoPtdCho. DHA (50 μM) produced a ROS induction in cells and aggravated the LysoPtdCho-induced oxidative stress. It did not modify the basal eNOS activity but impaired the stimulation of eNOS induced by histamine and was unable to correct the deleterious effect of LysoPtdCho on histamine-stimulated eNOS activity or phosphorylation of Ser 1177. In contrast, EPA (90 μM) did not modify the ROS level produced in the presence or absence of LysoPtdCho or basal eNOS activity and the stimulating effect of histamine on eNOS. However, it diminished the deleterious effect of LysoPtdCho as well as on the histamine-stimulated eNOS activity on the phosphorylation on Ser 1177 of eNOS. The beneficial effect of EPA but not DHA on endothelial eNOS activity in Ea hy 926 could be also partially due to a slight decrease in membrane DHA content in EPA-treated cells. Consequently, the equilibrium between NO generated by eNOS and ROS due to oxidative stress could explain, in part, the beneficial effect of EPA on the development of cardiovascular diseases. By contrast ARA an n-6 PUFA was devoid of any effect on ROS generation or eNOS activity in the basal state or after histamine-induced stimulation. In vivo experiments should be undertaken to confirm these results.  相似文献   

6.
The epidermal growth factor receptor (EGFR) family and its ligands serve as a switchboard for the regulation of multiple cellular processes. While it is clear that EGFR activity is essential for normal cardiac development, its function in the vasculature and its role in cardiovascular disease are only beginning to be elucidated. In the blood vessel, endothelial cells and smooth muscle cells are both a source and a target of EGF-like ligands. Activation of EGFR has been implicated in blood pressure regulation, endothelial dysfunction, neointimal hyperplasia, atherogenesis, and cardiac remodeling. Furthermore, increased circulating EGF-like ligands may mediate accelerated vascular disease associated with chronic inflammation. Although EGFR inhibitors are currently being used clinically for the treatment of cancer, additional studies are necessary to determine whether abrogation of EGFR signaling is a potential strategy for the treatment of cardiovascular disease.  相似文献   

7.
The release of heavy metals from the combustion of hazardous wastes is an environmental issue of increasing concern. The species transformation characteristics of toxic heavy metals and their distribution are considered to be a complex problem of mechanism. The behavior of hazardous dyestuff residue is investigated in a tubular furnace under the general condition of hazardous waste pyrolysis and gasfication. Data interpretation has been aided by parallel theoretical study based on a thermodynamic equilibrium model based on the principle of Gibbs free energy minimization. The results show that Ni, Zn, Mn, and Cr are more enriched in dyestuff residue incineration than other heavy metals (Hg, As, and Se) subjected to volatilization. The thermodynamic model calculation is used for explaining the experiment data at 800℃ and analyzing species transformation of heavy metals. These results of species transformation are used to predict the distribution and emission characteristics of trace elements. Although most trace element predictions are validated by the measurements, cautions are in order due to the complexity of incineration systems.  相似文献   

8.
l-Arginine (Arg) is oxidized to l-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with Arg for binding to NOS. Most ADMA is degraded by dimethylarginine dimethyaminohydrolase (DDAH), distributed widely throughout the body and regulates ADMA levels and, therefore, NO synthesis. In recent years, several studies have suggested that increased ADMA levels are a marker of atherosclerotic change, and can be used to assess cardiovascular risk, consistent with ADMA being predominantly absorbed by endothelial cells. NO is an important messenger molecule involved in numerous biological processes, and its activity is essential to understand both pathogenic and therapeutic mechanisms in kidney disease and renal transplantation. NO production is reduced in renal patients because of their elevated ADMA levels with associated reduced DDAH activity. These factors contribute to endothelial dysfunction, oxidative stress and the progression of renal damage, but there are treatments that may effectively reduce ADMA levels in patients with kidney disease. Available data on ADMA levels in controls and renal patients, both in adults and children, also are summarized in this review.  相似文献   

9.
10.
Exposure to particulate matter (PM) is becoming a major global health issue. The amount and time of exposure to PM are known to be closely associated with cardiovascular diseases. However, the mechanism through which PM affects the vascular system is still not clear. Endothelial cells line the interior surface of blood vessels and actively interact with plasma proteins, including the complement system. Unregulated complement activation caused by invaders, such as pollutants, may promote endothelial inflammation. In the present study, we sought to investigate whether urban PM (UPM) acts on the endothelial environment via the complement system. UPM-treated human endothelial cells with normal human serum showed the deposition of membrane attack complexes (MACs) on the cell surface via the alternative pathway of the complement system. Despite the formation of MACs, cell death was not observed, and cell proliferation was increased in UPM-mediated complement activation. Furthermore, complement activation on endothelial cells stimulated the production of inflammation-related proteins. Our results revealed that UPM could activate the complement system in human endothelial cells and that complement activation regulated inflammatory reaction in microenvironment. These findings provide clues with regard to the role of the complement system in pathophysiologic events of vascular disease elicited by air pollution.  相似文献   

11.
Myriaporone 3/4, a cytotoxic polyketide, has been reported as an inhibitor of eukaryotic protein synthesis. However, the mechanism by which it inhibits translation was unknown. Here we show that myriaporone 3/4 stalls protein synthesis in the elongation phase by inducing phosphorylation of eukaryotic elongation factor 2. The phosphorylation results from direct binding of myriaporone 3/4 to eukaryotic elongation factor 2 kinase. Our study also shows that myriaporone 3/4 in the nanomolar range inhibits in vitro tube formation by endothelial cells without being cytotoxic. In general, myriaporone 3/4 was at least 300 times less toxic to primary cells than to tumor cells.  相似文献   

12.
13.
Catalytic NOx reduction by carbon supporting transition metals (Fe, Co, Ni, Cu) and potassium has been studied. The effect of oxygen on the catalytic properties of the metals has been analyzed. Temperature-programmed reactions and isothermal reactions have been conducted in a fixed bed flow reactor. Temperature-programmed reduction in hydrogen, XRD and XPS have been used to characterize the catalysts. All the metals studied catalyze the NOx reduction by carbon in the presence of oxygen, but also the O2–carbon reaction. Metal catalytic activity is the result of two factors, the tendency of the metal to be oxidized by NO and the easiness of the resulting oxide to be reduced by carbon. Among the metals studied, nickel exhibits the highest selectivity for NOx reduction.

The results of this study strengthen the possible benefit of the lack of a gaseous reducing agent (such as ammonia or hydrocarbons) since the reduction of NOx is performed by the carbon support itself.  相似文献   


14.
Metals and organic contaminants, present in the water-column, sediment or food, are readily accumulated by aquatic organisms. Exposure to and toxic effects of contaminants can be measured in terms of the biochemical responses of the organisms—so-called molecular biomarkers. The applications, advantages and limitations of such diagnostic and prognostic tests are discussed. The hepatic biotransformation enzyme cytochrome P4501A in fish and other vertebrates is specifically induced by organic contaminants such as aromatic hydrocarbons, PCBs and dioxins, and is used as a biomarker of exposure to organic pollution. Its induction is involved in chemical carcinogenesis via catalysis of the covalent binding of organic contaminants to DNA (DNA-adducts). P4501A-induction, measured as enzyme activity, enzyme amount, or mRNA, has been successively used in many field studies, involving some 27 fish species, in USA and Europe. Metallothioneins (MTs) bind and are specifically induced by metals such as Cd, Hg, Ag and Cu, and are used in both vertebrates and invertebrates as a biomarker for metal exposure. Bulky, hydrophobic DNA-adducts are used as a biomarker for organic contaminant damage. MTs (measured at protein and mRNA levels) and DNA-adducts (32P-postlabelling method) have been applied less extensively in the field than P4501A, but the results are similarly encouraging. Biomarkers should be used as part of an integrated programme of pollution monitoring, involving also general measurements of biological damage and animal health, and analysis of chemical contaminants in the biota and environment. Commercial availability of antibodies and mRNA probes will accelerate the widespread application of these molecular biomarkers.  相似文献   

15.
Transforming growth factor-β1 (TGF-β1) occurs at high levels at damage sites of vascular endothelial cell layers and regulates the functions of vascular endothelial cells. Reactive sulfur species (RSS), such as cysteine persulfide, glutathione persulfide, and hydrogen persulfide, are cytoprotective factors against electrophiles such as reactive oxygen species and heavy metals. Previously, we reported that sodium trisulfide, a sulfane sulfur donor, promotes vascular endothelial cell proliferation. The objective of the present study was to clarify the regulation and significance of RSS synthesis in vascular endothelial cells after exposure to TGF-β1. Bovine aortic endothelial cells in a culture system were treated with TGF-β1 to assess the expression of intracellular RSS, the effect of RSS on cell proliferation in the presence of TGF-β1, induction of RSS-producing enzymes by TGF-β1, and intracellular signal pathways that mediate this induction. The results suggest that TGF-β1 increased intracellular RSS levels to modulate its inhibitory effect on proliferation. The increased production of RSS, probably high-molecular-mass RSS, was due to the induction of cystathionine γ-lyase and cystathionine β-synthase, which are RSS-producing enzymes, and the induction was mediated by the ALK5-Smad2/3/4 and ALK5-Smad2/3-ATF4 pathways in vascular endothelial cells. TGF-β1 regulates vascular endothelial cell functions such as proliferation and fibrinolytic activity; intracellular high-molecular-mass RSS, which are increased by TGF-β1, may modulate the regulation activity in vascular endothelial cells.  相似文献   

16.
Hyperlipidemia manifested by high blood levels of free fatty acids (FFA) and lipoprotein triglycerides is critical for the progression of type 2 diabetes (T2D) and its cardiovascular complications via vascular endothelial dysfunction. However, attempts to assess high FFA effects in endothelial culture often result in early cell apoptosis that poorly recapitulates a much slower pace of vascular deterioration in vivo and does not provide for the longer-term studies of endothelial lipotoxicity in vitro. Here, we report that palmitate (PA), a typical FFA, does not impair, by itself, endothelial barrier and insulin signaling in human umbilical vein endothelial cells (HUVEC), but increases NO release, reactive oxygen species (ROS) generation, and protein labeling by malondialdehyde (MDA) hallmarking oxidative stress and increased lipid peroxidation. This PA-induced stress eventually resulted in the loss of cell viability coincident with loss of insulin signaling. Supplementation with 5-aminoimidazole-4-carboxamide-riboside (AICAR) increased endothelial AMP-activated protein kinase (AMPK) activity, supported insulin signaling, and prevented the PA-induced increases in NO, ROS, and MDA, thus allowing to maintain HUVEC viability and barrier, and providing the means to study the long-term effects of high FFA levels in endothelial cultures. An upgraded cell-based model reproduces FFA-induced insulin resistance by demonstrating decreased NO production by vascular endothelium.  相似文献   

17.
NO removal activity and the durability of iron-exchanged mordenite type zeolite catalyst (FeHM) have been examined in a continuous fixed bed flow reactor. The catalytic activity for NO reduction by NH3 in the presence of oxygen was much higher than that in the absence of oxygen, and it was fully reversible with respect to the presence of oxygen in the feed gas stream. The oxidation ability of SCR catalysts including FeHM was critical for both reactions of NH3 and SO2 oxidation, thus for the NO removal activity and its sulfur tolerance. The maximum conversion of NO for FeHM catalyst with respect to the reaction temperature shifted to the higher temperature due to its mild oxidation ability. The deactivation behaviors such as the changes of the physicochemical properties of the catalyst and the loss of NO removal activity induced by SO2 could not be distinguished, regardless of the metals exchanged in zeolite. However, the amount of deactivating agents deposited on the catalyst surface depended on the species of metals exchanged on the mordenite type zeolite, which was mainly attributed to the oxidation ability of metals for SO2 conversion to SO3.  相似文献   

18.
Nitric oxide (NO) is released by endothelial cells in the blood vessel wall to enhance vasodilation. Marine polyphenols are known to have protective effects against vascular dysfunction and hypertension. The present study is the first to investigate how diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae affects calcium levels, resulting in enhanced vasodilation. We examined calcium modulation with the well-known receptors, acetylcholine receptor (AchR) and vascular endothelial growth factor 2 (VEGFR2), which are related to NO formation, and further confirmed the vasodilatory effect of DPHC. We confirmed that DPHC stimulated NO production by increasing calcium levels and endothelial nitric oxide synthase (eNOS) expression. DPHC affected AchR and VEGFR2 expression, thereby influencing transient calcium intake. Specific antagonists, atropine and SU5416, were used to verify our findings. Furthermore, based on the results of in vivo experiments, we treated Tg(flk:EGFP) transgenic zebrafish with DPHC to confirm its vasodilatory effect. In conclusion, the present study showed that DPHC modulated calcium transit through AchR and VEGFR2, increasing endothelial-dependent NO production. Thus, DPHC, a natural marine component, can efficiently ameliorate cardiovascular diseases by improving vascular function.  相似文献   

19.
The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.  相似文献   

20.
Caveolae are cholesterol and glycosphingolipids-enriched microdomains of plasma membranes. Caveolin-1 represents the major structural protein of caveolae, that also contain receptors and molecules involved in signal transduction pathways. Caveolae are particularly abundant in endothelial cells, where they play important physiological and pathological roles in regulating endothelial cell functions. Several molecules with relevant functions in endothelial cells are localized in caveolae, including endothelial nitric oxide synthase (eNOS), which regulates the production of nitric oxide, and scavenger receptor class B type I (SR-BI), which plays a key role in the induction of eNOS activity mediated by high density lipoproteins (HDL). HDL have several atheroprotective functions, including a positive effect on endothelial cells, as it is a potent agonist of eNOS through the interaction with SR-BI. However, the oxidative modification of HDL may impair their protective role. In the present study we evaluated the effect of 15-lipoxygenase-mediated modification of HDL3 on the expression and/or activity of some proteins localized in endothelial caveolae and involved in the nitric oxide generation pathway. We found that after modification, HDL3 failed to activate eNOS and to induce NO production, due to both a reduced ability to interact with its own receptor SR-BI and to a reduced expression of SR-BI in cells exposed to modified HDL. These findings suggest that modification of HDL may reduce its endothelial-protective role also by interfering with vasodilatory function of HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号