首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The CRISPR/Cas9 site-directed gene-editing system offers great advantages for identifying gene function and crop improvement. The circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness, but operates through largely unknown mechanisms. Here, we generated core circadian clock evening components, Brassica rapa PSEUDO-RESPONSE REGULATOR (BrPRR) 1a, 1b, and 1ab (both 1a and 1b double knockout) mutants, using CRISPR/Cas9 genome editing in Chinese cabbage, where 9–16 genetic edited lines of each mutant were obtained. The targeted deep sequencing showed that each mutant had 2–4 different mutation types at the target sites in the BrPRR1a and BrPRR1b genes. To identify the functions of BrPRR1a and 1b genes, hypocotyl length, and mRNA and protein levels of core circadian clock morning components, BrCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and BrLHY (LATE ELONGATED HYPOCOTYL) a and b were examined under light/dark cycles and continuous light conditions. The BrPRR1a and 1ab double mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm than wildtype (WT). On the other hand, the BrPRR1b mutant was not significantly different from WT. These results suggested that two paralogous genes may not be associated with the same regulatory function in Chinese cabbage. Taken together, our results demonstrated that CRISPR/Cas9 is an efficient tool for achieving targeted genome modifications and elucidating the biological functions of circadian clock genes in B. rapa, for both breeding and improvement.  相似文献   

4.
Caffeoyl shikimate esterase (CSE) has been shown to play an important role in lignin biosynthesis in plants and is, therefore, a promising target for generating improved lignocellulosic biomass crops for sustainable biofuel production. Populus spp. has two CSE genes (CSE1 and CSE2) and, thus, the hybrid poplar (Populus alba × P. glandulosa) investigated in this study has four CSE genes. Here, we present transgenic hybrid poplars with knockouts of each CSE gene achieved by CRISPR/Cas9. To knockout the CSE genes of the hybrid poplar, we designed three single guide RNAs (sg1–sg3), and produced three different transgenic poplars with either CSE1 (CSE1-sg2), CSE2 (CSE2-sg3), or both genes (CSE1/2-sg1) mutated. CSE1-sg2 and CSE2-sg3 poplars showed up to 29.1% reduction in lignin deposition with irregularly shaped xylem vessels. However, CSE1-sg2 and CSE2-sg3 poplars were morphologically indistinguishable from WT and showed no significant differences in growth in a long-term living modified organism (LMO) field-test covering four seasons. Gene expression analysis revealed that many lignin biosynthetic genes were downregulated in CSE1-sg2 and CSE2-sg3 poplars. Indeed, the CSE1-sg2 and CSE2-sg3 poplars had up to 25% higher saccharification efficiency than the WT control. Our results demonstrate that precise editing of CSE by CRISPR/Cas9 technology can improve lignocellulosic biomass without a growth penalty.  相似文献   

5.
The development of thermosensitive genic male sterile (TGMS) lines is the key to breeding two-line hybrid rice, which has been widely applied in China to increase grain yield. CRISPR/Cas9 has been widely used in genome editing to create novel mutants in rice. In the present study, a super grain quality line, GXU 47, was used to generate a new TGMS line with specific mutations in a major TGMS gene tms5 generated with CRISPR/Cas9-mediated genome editing in order to improve the rice quality of two-line hybrids. A mutagenesis efficiency level of 75% was achieved, and three homozygous T-DNA-free mutant lines were screened out. The mutants exhibited excellent thermosensitive male fertility transformation characteristics with complete male sterility at ≥24 °C and desirable male fertility at around 21 °C. Proteomic analysis based on isobaric tags for relative and absolute quantification (iTRAQ) was performed to unveil the subsequent proteomic changes. A total of 192 differentially expressed proteins (DEPs), including 35 upregulated and 157 downregulated, were found. Gene ontology (GO) analysis revealed that the DEPs were involved in a single-organism biosynthetic process, a single-organism metabolic process, oxidoreductase activity, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEPs were involved in ubiquinone and other terpenoid quinone biosynthesis, the biosynthesis of secondary metabolites, metabolic pathways, and phenylpropanoid biosynthesis. Our study shows that high mutation efficiency was achieved in both target sites, and T-DNA-free mutant lines were obtained in the T1 generation. The present study results prove that it is feasible and efficient to generate an excellent mutant line with CRISPR/Cas9, which provides a novel molecular mechanism of male sterility caused by the mutation of tms5.  相似文献   

6.
Leptosphaeria maculans causes blackleg disease, which is one of the most destructive diseases of canola (Brassica napus L.). Due to the erosion of the current resistance in B. napus, it is pivotal to introduce new resistant genotypes to the growers. This study evaluated the potential of Rlm7 gene as resistance to its corresponding avirulence AvrLm7 gene is abundant. The Rlm7 line was inoculated with L. maculans isolate with AvrLm7; UMAvr7; and the CRISPR/Cas9 knockout AvrLm7 mutant, umavr7, of the same isolate to cause incompatible and compatible interactions, respectively. Dual RNA-seq showed differential gene expressions in both interactions. High expressions of virulence-related pathogen genes-CAZymes, merops, and effector proteins after 7-dpi in compatible interactions but not in incompatible interaction—confirmed that the pathogen was actively virulent only in compatible interactions. Salicyclic and jasmonic acid biosynthesis and signaling-related genes, defense-related PR1 gene (GSBRNA2T00150001001), and GSBRNA2T00068522001 in the NLR gene family were upregulated starting as early as 1- and 3-dpi in the incompatible interaction and the high upregulation of those genes after 7-dpi in compatible interactions confirmed the early recognition of the pathogen by the host and control it by early activation of host defense mechanisms in the incompatible interaction.  相似文献   

7.
Loss-of-function mutations in the synaptosomal-associated protein 29 (SNAP29) lead to the rare autosomal recessive neurocutaneous cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma (CEDNIK) syndrome. SNAP29 is a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein. So far, it has been shown to be involved in membrane fusion, epidermal differentiation, formation of primary cilia, and autophagy. Recently, we reported the successful generation of two mouse models for the human CEDNIK syndrome. The aim of this investigation was the generation of a CRISPR/Cas9-mediated SNAP29 knockout (KO) in an immortalized human cell line to further investigate the role of SNAP29 in cellular homeostasis and signaling in humans independently of animal models. Comparison of different methods of delivery for CRISPR/Cas9 plasmids into the cell revealed that lentiviral transduction is more efficient than transfection methods. Here, we reported to the best of our knowledge the first successful generation of a CRISPR/Cas9-mediated SNAP29 KO in immortalized human MRC5Vi fibroblasts (c.169_196delinsTTCGT) via lentiviral transduction.  相似文献   

8.
9.
Tomato is one of the major vegetable crops consumed worldwide. Tomato yellow leaf curl virus (TYLCV) and fungal Oidium sp. are devastating pathogens causing yellow leaf curl disease and powdery mildew. Such viral and fungal pathogens reduce tomato crop yields and cause substantial economic losses every year. Several commercial tomato varieties include Ty-5 (SlPelo) and Mildew resistance locus o 1 (SlMlo1) locus that carries the susceptibility (S-gene) factors for TYLCV and powdery mildew, respectively. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a valuable genome editing tool to develop disease-resistant crop varieties. In this regard, targeting susceptibility factors encoded by the host plant genome instead of the viral genome is a promising approach to achieve pathogen resistance without the need for stable inheritance of CRISPR components. In this study, the CRISPR/Cas9 system was employed to target the SlPelo and SlMlo1 for trait introgression in elite tomato cultivar BN-86 to confer host-mediated immunity against pathogens. SlPelo-knockout lines were successfully generated, carrying the biallelic indel mutations. The pathogen resistance assays in SlPelo mutant lines confirmed the suppressed accumulation of TYLCV and restricted the spread to non-inoculated plant parts. Generated knockout lines for the SlMlo1 showed complete resistance to powdery mildew fungus. Overall, our results demonstrate the efficiency of the CRISPR/Cas9 system to introduce targeted mutagenesis for the rapid development of pathogen-resistant varieties in tomato.  相似文献   

10.
11.
CRISPR/Cas system has developed a new technology to modify target genes. In this study, CasΦ2 is a newly Cas protein that we used for genome modification in Arabidopsis and tobacco. PDS and BRI1 of marker genes were chosen for targeting. CasΦ2 has the function to cleave pre-crRNA. In the presence of 10 mM Mg2+ irons concentration, sgRNA3 type guided CasΦ2 to edit target gene and generate mutation, and a mutant seedling of AtBRI1 gene with an expected male sterile phenotype was obtained. In the process of tobacco transformation, the gene editing activity of CasΦ2 can be activated by 100 nM Mg2+ irons concentration, and sgRNA1 type guided CasΦ2 to edit target gene. Mutant seedlings of NtPDS gene with an expected albino were obtained. The results indicate that CasΦ2 can effectively edit target genes under the guidance of different sgRNA type in the presence of Mg2+ ions. Together, our results verify that the CRISPR/CasΦ2 system is an effective and precise tool for genome editing in plants.  相似文献   

12.
Shiga toxin (STx) or Vero toxin is a virulence factor produced by enterohemorrhagic Escherichia coli. The toxin binds to the glycosphingolipid globotriaosylceramide (Gb3) for its entry, and causes cell death by inhibiting ribosome function. Previously, we performed a loss-of-function screen in HeLa cells using a human CRISPR knockout (KO) library and identified various host genes required for STx-induced cell death. To determine whether this library targeted to the human genome is applicable to non-human primate cells and to identify previously unrecognized factors crucial for STx-induced cell death, we herein performed a similar screen in the African green monkey kidney-derived Vero C1008 subline. Many genes relevant to metabolic enzymes and membrane trafficking were enriched, although the number of enriched genes was less than that obtained in the screening for HeLa cells. Of note, several genes that had not been enriched in the previous screening were enriched: one of these genes was SYS1, which encodes a multi-spanning membrane protein in the Golgi apparatus. In SYS1 KO Vero cells, expression of Gb3 and sphingomyelin was decreased, while that of glucosylceramide and lactosylceramide was increased. In addition, loss of SYS1 inhibited the biosynthesis of protein glycans, deformed the Golgi apparatus, and perturbed the localization of trans-Golgi network protein (TGN) 46. These results indicate that the human CRISPR KO library is applicable to Vero cell lines, and SYS1 has a widespread effect on glycan biosynthesis via regulation of intra-Golgi and endosome–TGN retrograde transports.  相似文献   

13.
14.
15.
Soybean (Glycine max) oil is one of the most widely used vegetable oils across the world. Breeding of soybean to reduce the saturated fatty acid (FA) content, which is linked to cardiovascular disease, would be of great significance for nutritional improvement. Acyl-acyl carrier protein thioesterases (FATs) can release free FAs and acyl-ACP, which ultimately affects the FA profile. In this study, we identified a pair of soybean FATB coding genes, GmFATB1a and GmFATB1b. Mutants that knock out either or both of the GmFATB1 genes were obtained via CRISPR/Cas9. Single mutants, fatb1a and fatb1b, showed a decrease in leaf palmitic and stearic acid contents, ranging from 11% to 21%. The double mutant, fatb1a:1b, had a 42% and 35% decrease in palmitic and stearic acid content, displayed growth defects, and were male sterility. Analysis of the seed oil profile revealed that fatb1a and fatb1b had significant lower palmitic and stearic acid contents, 39–53% and 17–37%, respectively, while that of the unsaturated FAs were the same. The relative content of the beneficial FA, linoleic acid, was increased by 1.3–3.6%. The oil profile changes in these mutants were confirmed for four generations. Overall, our data illustrate that GmFATB1 knockout mutants have great potential in improving the soybean oil quality for human health.  相似文献   

16.
17.
Despite recent progress, the application of CRISPR/Cas9 in perennial plants still has many obstacles to overcome. Our previous results with CRISPR/Cas9 in apple and pear indicated the frequent production of phenotypic and genotypic chimeras, after editing of the phytoene desaturase (PDS) gene conferring albino phenotype. Therefore, our first objective was to determine if adding an adventitious regeneration step from leaves of the primary transgenic plants (T0) would allow a reduction in chimerism. Among hundreds of adventitious buds regenerated from a variegated T0 line, 89% were homogeneous albino. Furthermore, the analysis of the target zone sequences of twelve of these regenerated lines (RT0 for “regenerated T0” lines) indicated that 99% of the RT0 alleles were predicted to produce a truncated target protein and that 67% of RT0 plants had less heterogeneous editing profiles than the T0. Base editors are CRISPR/Cas9-derived new genome-editing tools that allow precise nucleotide substitutions without double-stranded breaks. Hence, our second goal was to demonstrate the feasibility of CRISPR/Cas9 base editing in apple and pear using two easily scorable genes: acetolactate synthaseALS (conferring resistance to chlorsulfuron) and PDS. The two guide RNAs under MdU3 and MdU6 promoters were coupled into a cytidine base editor harboring a cytidine deaminase fused to a nickase Cas9. Using this vector; we induced C-to-T DNA substitutions in the target genes; leading to discrete variation in the amino-acid sequence and generating new alleles. By co-editing ALS and PDS genes; we successfully obtained chlorsulfuron resistant and albino lines in pear. Overall; our work indicates that a regeneration step can efficiently reduce the initial chimerism and could be coupled with the application of base editing to create accurate genome edits in perennial plants.  相似文献   

18.
19.
Rice (Oryza sativa L.) is one of the major crops in the world and significant increase in grain yield is constant demand for breeders to meet the needs of a rapidly growing population. The size of grains is one of major components determining rice yield and a vital trait for domestication and breeding. To increase the grain size in rice, OsSPL16/qGW8 was mutagenized through CRISPR/Cas9, and proteomic analysis was performed to reveal variations triggered by mutations. More specifically, mutants were generated with two separate guide RNAs targeting recognition sites on opposite strands and genomic insertions and deletions were characterized. Mutations followed Mendelian inheritance and homozygous and heterozygous mutants lacking any T-DNA and off-target effects were screened. The mutant lines showed a significant increase in grain yield without any change in other agronomic traits in T0, T1, and T2 generations. Proteomic screening found a total of 44 differentially expressed proteins (DEPs), out of which 33 and 11 were up and downregulated, respectively. Most of the DEPs related to pyruvate kinase, pyruvate dehydrogenase, and cell division and proliferation were upregulated in the mutant plants. Pathway analysis revealed that DEPs were enriched in the biosynthesis of secondary metabolites, pyruvate metabolism, glycolysis/gluconeogenesis, carbon metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and citrate cycle. Gene Ontology (GO) analysis presented that most of the DEPs were involved in the pyruvate metabolic process and pyruvate dehydrogenase complex. Proteins related to pyruvate dehydrogenase E1 component subunit alpha-1 displayed higher interaction in the protein-protein interaction (PPI) network. Thus, the overall results revealed that CRISPR/Cas9-guided OsSPL16 mutations have the potential to boost the grain yield of rice. Additionally, global proteome analysis has broad applications for discovering molecular components and dynamic regulation underlying the targeted gene mutations.  相似文献   

20.
Clustered regularly interspaced palindromic repeat (CRISPR)-mediated mutagenesis has become an important tool in plant research, enabling the characterization of genes via gene knock-out. CRISPR genome editing tools can be applied to generate multi-gene knockout lines. Typically, multiple single-stranded, single guide RNAs (gRNAs) must be expressed in an organism to target multiple genes simultaneously; however, a single gRNA can target multiple genes if the target genes share similar sequences. A gene cluster comprising ACQUIRED OSMOTOLERANCE (ACQOS; AT5G46520) and neighboring nucleotide-binding leucine-rich repeats (NLRs; AT5G46510) is associated with osmotic tolerance. To investigate the role of ACQOS and the tandemly arranged NLR in osmotic tolerance, we introduced small insertion/deletion mutations into two target genes using a single gRNA and obtained transformant plant lines with three different combinations of mutant alleles. We then tested our mutant lines for osmotic tolerance after a salt-stress acclimation period by determining the chlorophyll contents of the mutant seedlings. Our results strongly suggest that ACQOS is directly associated with salt resistance, while the neighboring NLR is not. Here, we confirmed previous findings suggesting the involvement of ACQOS in salt tolerance and demonstrated the usefulness of CRISPR-mediated mutagenesis in validating the functions of genes in a single genetic background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号