首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
House dust mites (HDMs) are a common source of respiratory allergens responsible for allergic asthma and innate immune responses in human diseases. Since HDMs are critical factors in the triggering of allergen-induced airway mucosa from allergic asthma, we aimed to investigate the mechanisms of Toll-like receptors (TLR) in the signaling of the HDM extract that is involved in mucus hypersecretion and airway inflammation through the engagement of innate immunity. Previously, we reported that the somatic nuclear autoantigenic sperm protein (sNASP)/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis controls the initiation of TLRs to maintain the homeostasis of the innate immune response. The present study showed that the HDM extract stimulated the biogenesis of Mucin 5AC (MUC5AC) in bronchial epithelial cells via the TLR2/4 signaling pathway involving MyD88 and TRAF6. Specifically, sNASP binds to TRAF6 in unstimulated bronchial epithelial cells to prevent the activation of TRAF6-depenedent kinases. Upon on HDMs’ stimulation, sNASP is phosphorylated, leading to the activation of TRAF6 downstream of the p38 MAPK and NF-κB signaling pathways. Further, NASP-knockdown enhanced TRAF6 signaling and MUC5AC biogenesis. In the HDM-induced mouse asthma model, we found that the HDM extract promoted airway hyperresponsiveness (AHR), MUC5AC, and allergen-specific IgE production as well as IL-5 and IL-13 for recruiting inflammatory cells. Treatment with the PEP-NASP peptide, a selective TRAF6-blocking peptide, ameliorated HDM-induced asthma in mice. In conclusion, this study indicated that the sNASP/TRAF6 axis plays a regulatory role in asthma by modulating mucus overproduction, and the PEP-NASP peptide might be a potential target for asthma treatment.  相似文献   

2.
3.
4.
Hepatitis C virus (HCV) infection alters fatty acid synthesis and metabolism in association with HCV replication. The present study examined the effect of serum fatty acid composition on interferon (IFN)-based therapy. Fifty-five patients with HCV were enrolled and received IFN-based therapy. Patient characteristics, laboratory data (including fatty acids), and viral factors that could be associated with the anti-HCV effects of IFN-based therapy were evaluated. The effects of individual fatty acids on viral replication and IFN-based therapy were also examined in an in-vitro system. Multivariate logistic regression analysis showed that the level of serum palmitic acid before treatment and HCV genotype were significant predictors for rapid virological response (RVR), early virological response (EVR), and sustained virological response (SVR). High levels of palmitic acid inhibited the anti-HCV effects of IFN-based therapy. HCV replication assays confirmed the inhibitory effects of palmitic acid on anti-HCV therapy. The concentration of serum palmitic acid is an independent predictive factor for RVR, EVR, and SVR in IFN-based antiviral therapy. These results suggest that the effect of IFN-based antiviral therapy in patients with HCV infection might be enhanced by treatment that modulates palmitic acid levels.  相似文献   

5.
Brucellosis is a highly prevalent zoonotic disease caused by Brucella. Brucella spp. are gram-negative facultative intracellular parasitic bacteria. Its intracellular survival and replication depend on a functional virB system, an operon encoded by VirB1–VirB12. Type IV secretion system (T4SS) encoded by the virB operon is an important virulence factor of Brucella. It can subvert cellular pathway and induce host immune response by secreting effectors, which promotes Brucella replication in host cells and induce persistent infection. Therefore, this paper summarizes the function and significance of the VirB system, focusing on the structure of the VirB system where VirB T4SS mediates biogenesis of the endoplasmic reticulum (ER)-derived replicative Brucella-containing vacuole (rBCV), the effectors of T4SS and the cellular pathways it subverts, which will help better understand the pathogenic mechanism of Brucella and provide new ideas for clinical vaccine research and development.  相似文献   

6.
Colibacillosis is an acute and chronic avian disease caused by avian pathogenic E. coli (APEC). Previous studies have demonstrated that RIP2 plays a significant role in APEC infection. Moreover, increasing evidence indicates that microRNAs (miRNAs) are involved in host–pathogen interactions and the immune response. However, the role of miRNAs in the host against APEC infection remains unclear. Herein, we attempted to reveal new miRNAs potentially involved in the regulation of the immune and inflammatory response against APEC infection, with a particular focus on those possibly correlated with RIP2 expression, via miRNA-seq, RT-qPCR, Western blotting, dual-luciferase reporter assay, and CCK-8. The results showed that a total of 93 and 148 differentially expressed (DE) miRNAs were identified in the knockdown of RIP2 cells following APEC infection (shRIP2+APEC) vs. knockdown of RIP2 cells (shRIP2) and shRIP2 vs. wild-type cells (WT), respectively. Among those identified DE miRNAs, the biological function of gga-miR-455-5p was investigated. It was found that gga-miR-455-5p regulated by RIP2 was involved in the immune and inflammatory response against APEC infection via targeting of IRF2 to modulate the expression of type I interferons. Additionally, RIP2 could directly regulate the production of the type I interferons. Altogether, these findings highlighted the crucial role of miRNAs, especially gga-miR-455-5p, in host defense against APEC infection.  相似文献   

7.
Oncolytic virotherapy is a rapidly progressing field that uses oncolytic viruses (OVs) to selectively infect malignant cells and cause an antitumor response through direct oncolysis and stimulation of the immune system. Despite demonstrated pre-clinical efficacy of OVs in many cancer types and some favorable clinical results in glioblastoma (GBM) trials, durable increases in overall survival have remained elusive. Recent evidence has emerged that tumor-associated macrophage/microglia (TAM) involvement is likely an important factor contributing to OV treatment failure. It is prudent to note that the relationship between TAMs and OV therapy failures is complex. Canonically activated TAMs (i.e., M1) drive an antitumor response while also inhibiting OV replication and spread. Meanwhile, M2 activated TAMs facilitate an immunosuppressive microenvironment thereby indirectly promoting tumor growth. In this focused review, we discuss the complicated interplay between TAMs and OV therapies in GBM. We review past studies that aimed to maximize effectiveness through immune system modulation—both immunostimulatory and immunosuppressant—and suggest future directions to maximize OV efficacy.  相似文献   

8.
Hepatitis C virus (HCV) infection remains a major global health burden, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that detect pathogen-associated molecular patterns and activate downstream signaling to induce proinflammatory cytokine and chemokine production. An increasing number of studies have suggested the importance of TLR responses in the outcome of HCV infection. However, the exact role of innate immune responses, including TLR response, in controlling chronic HCV infection remains to be established. A proper understanding of the TLR response in HCV infection is essential for devising new therapeutic approaches against HCV infection. In this review, we discuss the progress made in our understanding of the host innate immune response to HCV infection, with a particular focus on the TLR response. In addition, we discuss the mechanisms adopted by HCV to avoid immune surveillance mediated by TLRs.  相似文献   

9.
The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.  相似文献   

10.
11.
12.
13.
Staphylococcus aureus is a species of Gram-positive staphylococcus. It can cause sinusitis, respiratory infections, skin infections, and food poisoning. Recently, it was discovered that S. aureus infects epithelial cells, but the interaction between S. aureus and the host is not well known. In this study, we confirmed S. aureus to be internalized by HaCaT cells using the ESAT-6-like protein EsxB and amplified within the host over time by escaping host immunity. S. aureus increases the expression of decay-accelerating factor (CD55) on the surfaces of host cells, which inhibits the activation of the complement system. This mechanism makes it possible for S. aureus to survive in host cells. S. aureus, sufficiently amplified within the host, is released through the initiation of cell death. On the other hand, the infected host cells increase their surface expression of UL16 binding protein 1 to inform immune cells that they are infected and try to be eliminated. These host defense systems seem to involve the alteration of tight junctions and the induction of ligand expression to activate immune cells. Taken together, our study elucidates a novel aspect of the mechanisms of infection and immune system evasion for S. aureus.  相似文献   

14.
Steven–Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) are severe adverse drug reactions, characterized by extensive epidermal detachment and erosions of mucous membrane. SJS/TEN is one of the most serious adverse reactions to Nevirapine (NVP) treatment, commonly used in developing countries as first-line treatment of human immunodeficiency virus infection. In the last years TRAF3IP2 gene variants had been described as associated with susceptibility to several diseases such as psoriasis and psoriatic arthritis. We hypothesized that this gene, involved in immune response and in NF-κB activation, could also be implicated in the SJS/TEN susceptibility. We performed a full resequencing of TRAF3IP2 gene in a population of patients treated with NVP. Twenty-seven patients with NVP-induced SJS/TEN and 78 controls, all from Mozambique, were enrolled. We identified eight exonic and three intronic already described variants. The case/control association analysis highlighted an association between the rs76228616 SNP in exon 2 and the SJS/TEN susceptibility. In particular, the variant allele (C) resulted significantly associated with a higher risk to develop SJS/TEN (p = 0.012 and OR = 3.65 (95% CI 1.33–10.01)). A multivariate analysis by logistic regression confirmed its significant contribution (p = 0.027, OR = 4.39 (95% CI 1.19–16.23)). In conclusion, our study suggests that a variant in TRAF3IP2 gene could be involved in susceptibility to SJS/TEN.  相似文献   

15.
Hepatitis C virus (HCV) is a positive-stranded RNA virus that infects approximately 130–170 million people worldwide. In 2005, the first HCV infection system in cell culture was established using clone JFH-1, which was isolated from a Japanese patient with fulminant HCV infection. JFH-1 replicates efficiently in hepatoma cells and infectious virion particles are released into the culture supernatant. The development of cell culture-derived HCV (HCVcc) systems has allowed us to understand how hosts respond to HCV infection and how HCV evades host responses. Although the mechanisms underlying the different outcomes of HCV infection are not fully understood, innate immune responses seem to have a critical impact on the outcome of HCV infection, as demonstrated by the prognostic value of IFN-λ gene polymorphisms among patients with chronic HCV infection. Herein, we review recent research on interferon response in HCV infection, particularly studies using HCVcc infection systems.  相似文献   

16.
The hepatitis C virus (HCV) is a global health problem affecting more than 170 million people. A chronic HCV infection is associated with liver fibrosis, liver cirrhosis and hepatocellular carcinoma. To enable viral persistence, HCV has developed mechanisms to modulate both innate and adaptive immunity. The recruitment of antiviral immune cells in the liver is mainly dependent on the release of specific chemokines. Thus, the modulation of their expression could represent an efficient viral escape mechanism to hamper specific immune cell migration to the liver during the acute phase of the infection. HCV-mediated changes in hepatic immune cell chemotaxis during the chronic phase of the infection are significantly affecting antiviral immunity and tissue damage and thus influence survival of both the host and the virus. This review summarizes our current understanding of the HCV-mediated modulation of chemokine expression and of its impact on the development of liver disease. A profound knowledge of the strategies used by HCV to interfere with the host’s immune response and the pro-fibrotic and pro-carcinogenic activities of HCV is essential to be able to design effective immunotherapies against HCV and HCV-mediated liver diseases.  相似文献   

17.
Naegleria fowleri is a ubiquitous protozoa parasite that can cause primary amoebic meningoencephalitis (PAM), a fatal brain infection in humans. Cathepsin Bs of N. fowleri (NfCBs) are multifamily enzymes. Although their pathogenic mechanism in PAM is not clearly understood yet, NfCBs have been proposed as pathogenic factors involved in the pathogenicity of amoeba. In this study, the immune response of BV-2 microglial cells induced by NfCB was analyzed. Recombinant NfCB (rNfCB) evoked enhanced expressions of TLR-2, TLR-4, and MyD88 in BV-2 microglial cells. This enzyme also induced an elevated production of several pro-inflammatory cytokines such as TNF-α, IL-1α, IL-1β, and IL-6 and iNOS in cells. The inhibition of mitogen-activated protein kinases (MAPKs), including JNK, p38, and ERK, effectively reduced the production of these pro-inflammatory cytokines. The rNfCB-induced production of pro-inflammatory cytokines in BV-2 microglial cells was suppressed by inhibiting NF-kB and AP-1. Phosphorylation and nuclear translocation of p65 in cells were also enhanced by rNfCB. These results suggest that NfCB can induce a pro-inflammatory immune response in BV-2 microglial cells via the NF-κB- and AP-1-dependent MAPK signaling pathways. Such a NfCB-induced pro-inflammatory immune response in BV-2 microglial cells might contribute to the pathogenesis of PAM caused by amoeba, by exacerbating deleterious immune responses and tissue damages in N. fowleri-infected foci of the brain.  相似文献   

18.
Glycolipids from Mycobacterium tuberculosis have a profound impact on the innate immune response of the host. Macrophage‐inducible C‐type lectin (Mincle) is a pattern‐recognition receptor that has been shown to bind trehalose dimycolate (TDM) from the mycobacterium and instigate intracellular signalling in the immune cell. There are structural similarities between the structures of TDM and phosphatidyl inositol mannoside (PIM). We thus hypothesized that these latter structures might also modulate an immune response in a similar manner. To test this, we synthesized a series of new mannose derivatives modified with fatty esters at the 6‐position and assessed the release of inflammatory cytokines in human U937 macrophages under the induction of lipopolysaccharides (LPS) after glycolipid treatment. The results showed that the amount of two major cytokines—tumour necrosis factor (TNF)‐α and interleukin (IL)‐6—released from LPS‐stimulated U937 cells decreased significantly when compared to a control upon treatment with the prepared glycolipids, thus indicating a reduction in cytokine production by the macrophages.  相似文献   

19.
目的探讨丙型肝炎病毒(Hepatitis C virus,HCV)2a FL-J6JFH NS5A基因置换对1b型HC-J4复制和感染性的影响,为建立HCV 1b细胞模型奠定基础。方法将JFH1 NS5A置换至HC-J4基因组内,构建嵌合全长基因组HC-J4/JFHNS-5A。体外制备野生型HC-J4、嵌合体及FL-J6JFH的RNA转录体,脂质体介导转染Huh-7.5细胞,采用间接免疫荧光法(IFA)检测转染细胞内的蛋白表达,HCV负链RNA特异性RT-PCR法和荧光定量PCR方法(FQ-PCR)检测基因复制情况。转染后不同时间收集转染细胞上清,感染naive Huh-7.5细胞,观察其感染性。结果 IFA未观察到野生型HC-J4和嵌合体转染细胞内HCV蛋白的表达,但在转染后18 d内的各个时间点,均检测到HCV负链RNA,表明嵌合体和野生型HC-J4在转染细胞内呈低水平复制。转染后第9天和12天,FQ-PCR检测表明,嵌合体转染细胞内HCV RNA水平明显高于野生型转染的细胞(P<0.05)。不同时间点转染细胞上清感染naive Huh-7.5细胞后,IFA均未观察到表达HCV蛋白的阳性细胞。结论 JFH1 NS5A蛋白虽然在一定程度上可提高1b型HC-J4株在体外培养细胞中的复制能力,但还不足以产生能够检测到的感染性病毒颗粒。HCV 1b细胞模型的建立尚受其他因素的影响。  相似文献   

20.
Fatty acids are derived from diet and fermentative processes by the intestinal flora. Two to five carbon chain fatty acids, termed short chain fatty acids (SCFA) are increasingly recognized to play a role in intestinal homeostasis. However, the characteristics of slightly longer 6 to 10 carbon, medium chain fatty acids (MCFA), derived primarily from diet, are less understood. Here, we demonstrated that SCFA and MCFA have divergent immunomodulatory propensities. SCFA down-attenuated host pro-inflammatory IL-1β, IL-6, and TNFα response predominantly through the TLR4 pathway, whereas MCFA augmented inflammation through TLR2. Butyric (C4) and decanoic (C10) acid displayed most potent modulatory effects within the SCFA and MCFA, respectively. Reduction in TRAF3, IRF3 and TRAF6 expression were observed with butyric acid. Decanoic acid induced up-regulation of GPR84 and PPARγ and altered HIF-1α/HIF-2α ratio. These variant immune characteristics of the fatty acids which differ by just several carbon atoms may be attributable to their origins, with SCFA being primarily endogenous and playing a physiological role, and MCFA exogenously from the diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号