首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
目前超分辨率的研究分成静态图像超分辨率和动态图像超分辨率两大类,静态图像超分辨率是指利用单张低分辨率图像内容来重建出高分辨率图像,本质上高分辨率图像的高频成分不能由原有低频成分算出,故如何补足高频成分以避免模糊现象是提升视觉质量的关键也是研究重点。图像去噪和超分辨率的目的是为了解决数字图像分辨率不足所提出的技术。这个技术主要是应用在某些只能得到单张低分辨率图像的场合,利用仅有的一张低分辨率图像来产生应用上所需的高分辨率图像。稀疏表示作为一种重要的数据编码与表达方式,不仅在人类的视觉认知机理上具有明确的理论依据,而且在信号表达与重建理论方面得到了严格的证明和推导。本文主要采用稀疏表示理论,对图像去噪和超分辨率重建的相关技术与算法进行研究。  相似文献   

2.
基于稀疏表示的Shearlet域SAR图像去噪   总被引:2,自引:0,他引:2  
该文通过分析SAR图像的噪声成因以及其斑点噪声模型,结合图像的稀疏表示理论提出一种基于稀疏表示的Shearlet域SAR图像去噪算法。算法从整体上对SAR图像进行去噪:首先对SAR图像进行Shearlet变换,然后利用稀疏表示模型构造出去噪的最优化模型,在此基础上进行迭代去噪,然后重构SAR图像得到去噪后的图像。实验结果表明:该文所提出的算法不仅可以显著去除相干斑噪声,提高去噪图像的峰值信噪比(Peak Signal to Noise Ratio, PSNR),还明显地改善了图像的视觉效果,更好地保留了图像纹理信息。  相似文献   

3.
何培亮 《红外》2018,39(10):27-32
红外图像具有动态范围窄、对比度低、易受噪声污染等缺点,传统红外图像去噪算法在去除噪声的同时也滤掉了图像细节。提出了一种基于稀疏表示的红外图像去噪新方法。该方法首先将原始红外图像进行聚类分析,再将每一聚类子图像分解成字典,由稀疏系数矩阵重构去噪后的红外图像。实验结果表明,该方法相比于传统红外图像去噪算法,能更好地保留图像的细节信息,视觉效果比较理想。  相似文献   

4.
薛智爽  杨平先  黄坤超  陈明举  陈柳 《电讯技术》2019,59(10):1215-1221
针对图像的非局部稀疏表示忽略图像中结构相似信息的缺点,将群稀疏表示引入到图像的最优滤波中,提出了一种有效去除图像高斯噪声的非局部群稀疏表示模型。该模型首先选择图像非局部相似块构建相似矩阵,在群稀疏限制下对相似矩阵进行正交分解得到正交矩阵;在已知噪声服从高斯分布的情况下,再通过求得的正交矩阵结合贝叶斯最小均方误差准则实现对特征矩阵的最优估计;最后通过正交矩阵与特征矩阵重构去噪后的图像。实验对比证明,所提的非局部群稀疏表示的图像去噪模型在去除噪声的同时更好地保留了图像的结构信息,获得了更好的主客观评价指标,去噪的峰值信噪比提高1 dB以上。  相似文献   

5.
基于EM算法的低剂量CT图像去噪   总被引:1,自引:0,他引:1       下载免费PDF全文
提高低剂量Cr图像的信噪比是使其获得有效临床应用的关键.文中针对低剂量CT投影数据极低信噪比特性以及投影数据噪声所特有的非平稳高斯特性,提出采用EM(Expectation-Maximization)算法通过求解图像后验概率的条件期望值最大的方法达到图像复原目的,同时在算法中实现了图像模型参数的估计,并且引入Gibbs采样技术,很好的解决了算法计算问题.计算机仿真及真实投影数据的实验表明,本文算法无论从复原图像的可视化效果上还是从噪声-分辨率关系的定量分析上,都具有一定优势.  相似文献   

6.
基于模拟退火算法的平面稀疏阵优化   总被引:1,自引:0,他引:1  
大规模稀疏阵列优化时,解空间十分庞大,一般优化算法难以实现.模拟退火算法不是一种解空间遍历算法,因而非常适合用于解决此类问题.利用平面阵的对称性,对解空间进行镜像压缩,进一步提高了优化效率.利用解空间压缩后的模拟退火算法优化得到了一种副瓣特性优良的稀疏布阵方式.  相似文献   

7.
孙云山  张立毅  耿艳香 《信号处理》2015,31(10):1354-1360
在医学CT成像过程中,由于引入了不可避免的噪声,致使图像质量下降,影响临床诊断。因此,研究医学CT图像降噪方法在诊疗服务中具有重要意义。本文结合图像分割的思想,利用模糊神经网络将图像像素分成边缘区、平滑区与纹理区等不同图像区域,通过小波稀疏表示对不同类型的图像块进行阈值去噪处理,以便更好地保留医学CT图像的细节特征。实验结果表明,本文算法对医学CT图像降噪有一定的效果,峰值信噪比(PSNR)和结构相似性指数(SSIM)都得到了改善,更好并且很好地保留CT图像的细节信息。   相似文献   

8.
基于稀疏表示的两级图像去噪   总被引:1,自引:0,他引:1  
在噪声较严重的情况下对图像进行恢复,至今仍是一个挑战。该文提出一种基于图像稀疏表示的去噪方法。在原子库训练中,引入基于相关系数的匹配准则和原子库裁剪方案,很好地处理了图像结构提取和人为噪声抑制之间的矛盾。实验结果表明,该方法在主客观去噪性能上较同类方法有了显著的提高,在噪声强度较大的情况下,获得了比当前先进方法更好的主客观图像恢复质量。  相似文献   

9.
为进一步有效提升稀疏表示人脸识别系统的识别率和可靠性,在分析人脸图像稀疏表示系数分类能力的基础上,提出了一种快速正交匹配追踪的脸识别新方法。快速正交匹配追踪算法通过在基本的正交匹配追踪算法中对冗余字典采用Cholesky分解,提高了算法的整体效率。  相似文献   

10.
基于过完备表示的图像去噪算法   总被引:1,自引:0,他引:1       下载免费PDF全文
解凯  张芬 《电子学报》2013,41(10):1911-1916
提出一种基于过完备线形变换集合的图像去除白高斯噪音算法.对于每个变换使用阈值技术进行图像去噪,图像恢复使用加权平均来融合去噪结果.采用稀疏集中度来计算图像稀疏分解的测度,而权重依赖该结果.对于图像稀疏区域,拥有较大的权.该方法不需要设计复杂的变换系数统计模型,与使用复杂的有向变换和图像统计模型方法相比,取得了较高的去噪性能.该方法简洁高效,尤其是对包含奇异特征的图像得到了较好的去噪结果.实验结果证实了所提方法的有效性.  相似文献   

11.
《现代电子技术》2019,(3):45-48
文中提出一种基于图像块稀疏表示的单幅图像超分辨率重建方法。所提出的重建过程提供了一个更好的稀疏解决方案,即L1范数优化过程。在优化过程中,利用高效的特征提取算子保证了高分辨率图像块的准确性。最后,利用粒子群优化算法选择最佳自适应稀疏正则化参数,使全局重建过程具有鲁棒性。目前使用字典耦合的训练方式学习字典。各种图像质量评价标准证明该方法相对于现有的超分辨率重建方法有很大的优越性。  相似文献   

12.
针对传统稀疏表示重构算法在高光谱目标检测中表现出运算速度慢的问题,提出了分步重构算法(Two Steps Reconstruction,TSR)。该方法先求得 K 个与待测像元最相似的字典原子,然后用这些原子线性表示待测像元以求解稀疏向量,舍弃了传统重构算法的迭代求解的方式,直接通过求解逆矩阵,简化了运算过程,使运算速度大幅提高。本文给出了方法的具体过程并将其与传统方法及其改进方法进行比较。实验结果表明,TSR 在保证检测精度不下降的同时能够大幅提升运算速度。  相似文献   

13.
刘洋  郭树旭  张凤春  李扬 《信号处理》2012,28(2):179-185
手指静脉识别技术因其独特的优势,受到广泛的关注。然而由硬件系统获取的手指静脉图像常常含有严重的噪声、阴影等问题,所以对低质量的静脉图像的去噪成为了整个识别过程的关键。本文提出了一种基于稀疏分解的指静脉图像去噪新方法。基于稀疏分解的图像去噪是将含有噪声的图像信息进行稀疏分解,分解成稀疏成分和其他成分。其中的稀疏部分是有用信息,其他部分被认为是噪声,再由图像的稀疏部分重建原始信号,达到恢复原始信号并去除噪声的效果。本文根据指静脉图像的静脉的特点,应用高斯函数构造了过完备库。用合成图像和真实指静脉图像分别对新算法进行实验验证。实验结果证明,与传统的去噪算法相比,峰值信噪比提高1-2dB。   相似文献   

14.
针对传统滤波算法在滤除红外图像噪声时会损失部分有用信息的问题,提出一种基于自适应过完备稀疏表示的红外图像滤波方法。该方法采用K-SVD算法以待滤波的红外图像为样本训练出自适应过完备原子库;采用正交匹配跟踪算法将红外图像信号在该过完备原子库上稀疏分解为稀疏成分和其他成分,稀疏成分对应红外图像中的有用信息,其他成分对应红外图像中的噪声,由稀疏成分重建图像,从而达到消除噪声的目的。实验结果表明:该方法相比传统方法具有更好的滤波效果,重建图像质量较高。  相似文献   

15.
提出了一种基于LBP算子和鲁棒稀疏表示的人脸识别方法。首先,提取训练样本和测试样本的LBP特征。其次,在原有稀疏表示分类器(SRC)的基础上添加一个权值矩阵W来解决l1正则化最小二乘问题。最后,利用鲁棒稀疏表示分类器(RSRC)分类测试人脸图像所属类别。在ATT人脸库上进行实验的结果表明,此方法是优于其他经典算法的。  相似文献   

16.
为了更好地实现图像的去噪效果,提出了一种改进的基于K-SVD(Singular Value Decomposition)字典学习的图像去噪算法。首先,将输入的含噪信号进行K均值聚类分解,将得到的图像块进行稀疏贝叶斯学习和噪声的更新,当迭代到一定次数时继续使用正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法对图像块进行稀疏编码,然后在完成稀疏编码的基础上通过奇异值分解来逐列更新字典,反复迭代至得到过完备字典以实现稀疏表示,最后对处理过的图像进行重构,得到去噪后的图像。实验结果表明,本文的改进算法相对于传统的K-SVD字典的图像去噪能够在保留图像边缘和细节信息的同时,更有效地去除图像中的噪声,具有更好的视觉效果。  相似文献   

17.
在被动毫米波的图像恢复中,L-R算法是一种简单而有效的非线性方法。但当噪声不可忽略时,L-R算法难以获得较好的复原结果。自适应稀疏表示,作为一种新的信号处理方法,具有表达信号灵活的特点,能够在保持目标特征的同时有效地去除噪声。该文提出一种基于自适应稀疏表示的L-R算法。首先采用稀疏信号表示的方法进行去噪,然后使用L-R算法进行图像恢复。这种改进算法通过使用基于自适应稀疏表示的去噪算法有效地减少了噪声对L-R算法的影响。实验数据的成像结果表明:该文的改进算法提高了L-R算法的性能,可用于低信噪比的图像复原。  相似文献   

18.
陈利霞  李子  袁华  欧阳宁 《电视技术》2015,39(17):16-20
针对基于单一字典训练稀疏表示的图像融合算法忽略图像局部特征的问题,提出了基于块分类稀疏表示的图像融合算法。此算法是根据图像局部特征的差异将图像块分为平滑、边缘和纹理三种结构类型,对边缘和纹理结构分别训练出各自的冗余字典。平滑结构利用算术平均法进行融合,边缘和纹理结构由对应字典利用稀疏表示算法进行融合,并对边缘结构稀疏表示中的残余量进行小波变换融合。实验结果证明,该算法相对于单一字典稀疏表示算法,在融合图像的主观评价和客观评价指标上都有显著改进,并且算法速度也有提高。  相似文献   

19.
如何降低高光谱图像大规模数据的存储和传输代价一直是学者们关心的问题。该文提出一种基于稀疏表示的高光谱数据压缩算法,通过一种波段选择算法构造训练样本集合,利用训练得到的基函数字典对高光谱数据所有波段进行稀疏编码,并对表示结果中非零元素的位置和数值进行量化和熵编码,从而实现高光谱图像压缩。实验结果表明该文算法与3维小波相比具有更好的非线性逼近性能,其率失真性能明显优于3D-SPIHT,并且在光谱信息保留上具有巨大的优势。  相似文献   

20.
基于稀疏码收缩的图像去噪   总被引:2,自引:0,他引:2  
石林锁  成浩 《信号处理》2007,23(5):742-746
数据的描述方法对提取数据特征至关重要,通常这种描述方法是基于数据的线性变换。传统的的傅立叶变换、离散余弦变换、主分量分析等线性变换方法都是基于全局变换的思想,无法反映图像在时频域的局部特征。独立分量分析是一种多维数据线性变换的方法,它从数据间的高阶统计特性出发,提取的图像数据特征基函数在空间频域中体现了方向性和局部性,能很好的自适应图像数据,并且其所得系数具有稀疏分布的特性。用它对无噪声图像数据进行学习,利用得到的稀疏码变换矩阵对噪声图像数据进行稀疏码变换,得到稀疏成分,并结合最大似然估计得到的软门限算子对该稀疏成分进行收缩,从而达到了去除图像噪声的目的。试验表明该方法在去噪效果和保存图像细节方面明显优于传统的维纳滤波方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号