首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mucosal-associated invariant T (MAIT) cells represent a distinct T cell population restricted by the MHC-class-I-related molecule, MR1, which recognizes microbial-derived vitamin B2 (riboflavin) metabolites. Their abundance in humans, together with their ability to promptly produce distinct cytokines including interferon γ (IFNγ) and tumor necrosis factor α (TNFα), are consistent with regulatory functions in innate as well as adaptive immunity. Here, we tested whether the alarmin interleukin 33 (IL-33), which is secreted following inflammation or cell damage, could activate human MAIT cells. We found that MAIT cells stimulated with IL-33 produced high levels of IFNγ, TNFα and Granzyme B (GrzB). The action of IL-33 required IL-12 but was independent of T cell receptor (TCR) cross-linking. MAIT cells expressed the IL-33 receptor ST2 (suppression of tumorigenicity 2) and upregulated Tbet (T-box expressed in T cells) in response to IL-12 or IL-33. Electronically sorted MAIT cells also upregulated the expression of CCL3 (Chemokine C-C motif ligand 3), CD40L (CD40 Ligand), CSF-1 (Colony Stimulating Factor 1), LTA (Lymphotoxin-alpha) and IL-2RA (IL-2 receptor alpha chain) mRNAs in response to IL-33 plus IL-12. In conclusion, IL-33 combined with IL-12 can directly target MAIT cells to induce their activation and cytokine production. This novel mechanism of IL-33 activation provides insight into the mode of action by which human MAIT cells can promote inflammatory responses in a TCR-independent manner.  相似文献   

3.
Norepinephrine is a neurotransmitter that also has an immunomodulatory effect and is involved in multiple sclerosis (MS) pathogenesis. This study aimed to clarify the role of the β2-adrenoreceptor in the norepinephrine-mediated modulation of interleukin-17 (IL-17) and interferon-γ (IFN-γ) production, which play a critical pathogenetic role in MS. CD4+ T cells obtained from twenty-five relapsing-remitting MS patients and sixteen healthy subjects were cultured ex vivo with norepinephrine and/or β2-adrenoreceptor antagonist or agonist, followed by a cytokine production analysis using ELISA. Norepinephrine suppressed IL-17 and IFN-γ production by the anti-CD3/anti-CD28-microbead-stimulated CD4+ T cells in both groups. Blockade of the β2-adrenoreceptor with the specific antagonist ICI 118.551 enhanced norepinephrine-mediated IL-17 suppression but decreased its inhibitory effect on IFN-γ production in MS patients. In contrast, the β2-adrenoreceptor agonist formoterol did not influence norepinephrine’s inhibitory effect on cytokine production in both groups. The blockade of the β2-adrenoreceptor, even in the absence of exogenous norepinephrine, suppressed IL-17 production but did not influence IFN-γ production in both groups. Conversely, β2-adrenoreceptor activation by formoterol decreased IFN-γ production and did not affect IL-17 production in both groups. These data illustrate the inhibitory effect of norepinephrine on IL-17 and IFN-γ production by CD4+ T cells in MS. The inhibitory effect of norepinephrine on IFN-γ production by CD4+ T cells in MS could be mediated via β2-adrenoreceptor activation.  相似文献   

4.
Atopic dermatitis (AD) is a common relapsing inflammatory skin disorder characterized by immune-mediated inflammation and epidermal barrier dysfunction. The pathogenesis of AD is multifactorial and has not been fully elucidated to date. This study aimed to evaluate whether serum IgG from adult AD patients could modulate the thymic maturation of IL-22-producing T cells and CLA+ T cells of non-atopic infants. Given that miRNAs regulate immune response genes, we evaluated whether miRNA expression is also altered in cultured thymocytes. Thymocytes were cultured with purified IgG from AD patients or control conditions (mock, Intravenous-IgG (IVIg), non-atopic IgG, or atopic non-AD IgG). Using flow cytometry analysis, we assessed the expression of CLA and intracellular levels of IL-4, IFN-γ, and IL-22 on double-positive T cells (DP T), CD4 T cells, or CD8 T cells. We also investigated the frequency of IgG isotypes and their direct interaction with the thymic T cells membrane. The miRNA profiles were evaluated by the Illumina small RNA-seq approach. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Increased frequencies of IL-22 and CLA+ producing CD4+ T cells cultured with IgG of AD patients was seen in non-atopic infant thymocytes compared to all control conditions. No alterations were observed in the frequency of IgG isotypes among evaluated IgG pools. Evidence for a direct interaction between IgG and thymic DP T, CD4 T, and CD8 T cells is presented. The small RNA-seq analysis identified ten mature miRNAs that were modulated by AD IgG compared to mock condition (miR-181b-5p, hsa-miR-130b-3p, hsa-miR-26a-5p, hsa-miR-4497, has-miR-146a, hsa-let-7i-5p, hsa-miR-342-3p, has-miR-148a-3p, has-miR-92a and has-miR-4492). The prediction of the targetome of the seven dysregulated miRNAs between AD and mock control revealed 122 putative targets, and functional and pathway enrichment analyses were performed. Our results enhance our understanding of the mechanism by which IgG can collaborate in thymic T cells in the setting of infant AD.  相似文献   

5.
The complexity of the human immune system is exacerbated by age-related changes to immune cell functionality. Many of these age-related effects remain undescribed or driven by mechanisms that are poorly understood. γδ T cells, while considered an adaptive subset based on immunological ontogeny, retain both innate-like and adaptive-like characteristics. This T cell population is small but mighty, and has been implicated in both homeostatic and disease-induced immunity within tissues and throughout the periphery. In this review, we outline what is known about the effect of age on human peripheral γδ T cells, and call attention to areas of the field where further research is needed.  相似文献   

6.
Liver transplantation (LTx) is often the only possible therapy for many end-stage liver diseases, but successful long-term transplant outcomes are limited by multiple factors, including ischemia reperfusion injury (IRI). This situation is aggravated by a shortage of transplantable organs, thus encouraging the use of inferior quality organs. Here, we have investigated early hepatic IRI in a retrospective, exploratory, monocentric case-control study considering organ marginality. We analyzed standard LTx biopsies from 46 patients taken at the end of cold organ preparation and two hours after reperfusion, and we showed that early IRI was present after two hours in 63% of cases. Looking at our data in general, in accordance with Eurotransplant criteria, a marginal transplant was allocated at our institution in about 54% of cases. We found that patients with a marginal-organ LTx showing evidence of IRI had a significantly worse one-year survival rate (51% vs. 75%). As we saw in our study cohort, the marginality of these livers was almost entirely due to steatosis. In contrast, survival rates in patients receiving a non-marginal transplant were not influenced by the presence or absence of IRI. Poorer outcomes in marginal organs prompted us to examine pre- and post-reperfusion biopsies, and it was revealed that transplants with IRI demonstrated significantly greater T cell infiltration. Molecular analyses showed that higher mRNA expression levels of CXCL-1, CD3 and TCRγ locus genes were found in IRI livers. We therefore conclude that the marginality of an organ, namely steatosis, exacerbates early IRI by enhancing effector immune cell infiltration. Preemptive strategies targeting immune pathways could increase the safety of using marginal organs for LTx.  相似文献   

7.
Recent advances in cancer immunotherapy have great promise for the treatment of solid tumors. One of the key limiting factors that hamper the decoding of physiological responses to these therapies is the inability to distinguish between specific and nonspecific responses. The identification of tumor-specific lymphocytes is also the most challenging step in cancer cell therapies such as adoptive cell transfer and T cell receptor (TCR) cloning. Here, we have elaborated a protocol for the identification of tumor-specific T lymphocytes and the deciphering of their repertoires. B16 melanoma engraftment following anti-PD1 checkpoint therapy provides better antitumor immunity compared to repetitive immunization with heat-shocked tumor cells. We have also revealed that the most error-prone part of dendritic cell (DC) generation, i.e., their maturation step, can be omitted if DCs are cultured at a sufficiently high density. Using this optimized protocol, we have achieved a robust IFNγ response to B16F0 antigens, but only within CD4+ T helper cells. A comparison of the repertoires of IFNγ-positive and -negative cells shows a prominent enrichment of certain clones with putative tumor specificity among the IFNγ+ fraction. In summary, our optimized protocol and the data provided here will aid in the acquisition of broad statistical data and the creation of a meaningful database of B16-specific TCRs.  相似文献   

8.
The skin is a critical barrier that protects against damage and infection. Within the epidermis and dermis reside γδ T cells that play a variety of key roles in wound healing and tissue homeostasis. Skin-resident γδ T cells require T cell receptor (TCR) ligation, costimulation, and cytokine reception to mediate keratinocyte activity and inflammatory responses at the wound site for proper wound repair. While both epidermal and dermal γδ T cells regulate inflammatory responses in wound healing, the timing and factors produced are distinct. In the absence of growth factors, cytokines, and chemokines produced by γδ T cells, wound repair is negatively impacted. This disruption in γδ T cell function is apparent in metabolic diseases such as obesity and type 2 diabetes. This review provides the current state of knowledge on skin γδ T cell activation, regulation, and function in skin homeostasis and repair in mice and humans. As we uncover more about the complex roles played by γδ T cells in wound healing, novel targets can be discovered for future clinical therapies.  相似文献   

9.
Human γδ T cells show potent cytotoxicity against various types of cancer cells in a major histocompatibility complex unrestricted manner. Phosphoantigens and nitrogen-containing bisphosphonates (N-bis) stimulate γδ T cells via interaction between the γδ T cell receptor (TCR) and butyrophilin subfamily 3 member A1 (BTN3A1) expressed on target cells. γδ T cell immunotherapy is classified as either in vivo or ex vivo according to the method of activation. Immunotherapy with activated γδ T cells is well tolerated; however, the clinical benefits are unsatisfactory. Therefore, the antitumor effects need to be increased. Administration of γδ T cells into local cavities might improve antitumor effects by increasing the effector-to-target cell ratio. Some anticancer and molecularly targeted agents increase the cytotoxicity of γδ T cells via mechanisms involving natural killer group 2 member D (NKG2D)-mediated recognition of target cells. Both the tumor microenvironment and cancer stem cells exert immunosuppressive effects via mechanisms that include inhibitory immune checkpoint molecules. Therefore, co-immunotherapy with γδ T cells plus immune checkpoint inhibitors is a strategy that may improve cytotoxicity. The use of a bispecific antibody and chimeric antigen receptor might be effective to overcome current therapeutic limitations. Such strategies should be tested in a clinical research setting.  相似文献   

10.
We have previously shown that a deficiency of CD1d-restricted invariant natural killer T (iNKT) cells exacerbates dextran sulfate sodium (DSS)-induced colitis in Yeti mice that exhibit IFNγ-mediated hyper-inflammation. Although iNKT cell-deficiency resulted in reduced Foxp3 expression by mesenteric lymph node (MLN) CD4+ T cells in DSS-treated Yeti mice, the cellular mechanisms that regulate Foxp3 expression by CD25+CD4+ T cells during intestinal inflammation remain unclear. We found that Foxp3CD25+CD4+ T cells expressing Th1 and Th17 phenotypic hallmarks preferentially expanded in the MLNs of DSS-treated Yeti/CD1d knockout (KO) mice. Moreover, adoptive transfer of Yeti iNKT cells into iNKT cell-deficient Jα18 KO mice effectively suppressed the expansion of MLN Foxp3CD25+CD4+ T cells during DSS-induced colitis. Interestingly, MLN dendritic cells (DCs) purified from DSS-treated Yeti/CD1d KO mice promoted the differentiation of naive CD4+ T cells into Foxp3CD25+CD4+ T cells rather than regulatory T (Treg) cells, indicating that MLN DCs might mediate Foxp3+CD25+CD4+ T cell expansion in iNKT cell-sufficient Yeti mice. Furthermore, we showed that Foxp3CD25+CD4+ T cells were pathogenic in DSS-treated Yeti/CD1d KO mice. Our result suggests that pro-inflammatory DCs and CD1d-restricted iNKT cells play opposing roles in Foxp3 expression by MLN CD25+CD4+ T cells during IFNγ-mediated intestinal inflammation, with potential therapeutic implications.  相似文献   

11.
LPS induces inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and causes an inflammatory response. The development of small molecules that have suppressive effect on those inflammatory cytokines is a desirable strategy for the treatment of inflammatory diseases. We synthesized 12 novel compounds with 4-amino-N-(4-(benzo[d]oxazol-2-ylamino)phenyl)butanamide moiety and evaluated their biological activities. Among them, 4 compounds (compound 5d, 5c, 5f, 5m and synthetic intermediate 4d) showed potent inhibition activities on IL-1β and IL-6 mRNA expression in vitro. Further, in vivo activity was evaluated with two compounds (5f and 4d) and mRNA levels of IL-1β, IL-6, and TNF-α were significantly decreased without hepatotoxicity. From the in vivo and in vitro test results, we confirmed that our synthesized compounds are effective for suppression of representative inflammatory cytokines.  相似文献   

12.
Approximately 25% of colorectal cancer (CRC) patients develop peritoneal metastasis, a condition associated with a bleak prognosis. The CRC peritoneal dissemination cascade involves the shedding of cancer cells from the primary tumor, their transport through the peritoneal cavity, their adhesion to the peritoneal mesothelial cells (PMCs) that line all peritoneal organs, and invasion of cancer cells through this mesothelial cell barrier and underlying stroma to establish new metastatic foci. Exosomes produced by cancer cells have been shown to influence many processes related to cancer progression and metastasis. In epithelial ovarian cancer these extracellular vesicles (EVs) have been shown to favor different steps of the peritoneal dissemination cascade by changing the functional phenotype of cancer cells and PMCs. Little is currently known, however, about the roles played by exosomes in the pathogenesis and peritoneal metastasis cascade of CRC and especially about the molecules that mediate their interaction and uptake by target PMCs and tumor cells. We isolated exosomes by size−exclusion chromatography from CRC cells and performed cell-adhesion assays to immobilized exosomes in the presence of blocking antibodies against surface proteins and measured the uptake of fluorescently-labelled exosomes. We report here that the interaction between integrin α5β1 on CRC cells (and PMCs) and its ligand ADAM17 on exosomes mediated the binding and uptake of CRC-derived exosomes. Furthermore, this process was negatively regulated by the expression of tetraspanin CD9 on exosomes.  相似文献   

13.
14.
Microvesicles (MVs) are plasma extracellular vesicles ranging from 100 (150) to 1000 nm in diameter. These are generally produced by different cells through their vital activity and are a source of various protein and non-protein molecules. It is assumed that MVs can mediate intercellular communication and modulate cell functions. The interaction between natural killer cells (NK cells) and endothelial cells underlies multiple pathological conditions. The ability of MVs derived from NK cells to influence the functional state of endothelial cells in inflammatory conditions has yet to be studied well. In this regard, we aimed to study the effects of MVs derived from NK cells of the NK-92 cell line stimulated with IL-1β on the phenotype, caspase activity, proliferation and migration of endothelial cells of the EA.hy926 cell line. Endothelial cells were cultured with MVs derived from cells of the NK-92 cell line after their stimulation with IL-1β. Using flow cytometry, we evaluated changes in the expression of endothelial cell surface molecules and endothelial cell death. We evaluated the effect of MVs derived from stimulated NK cells on the proliferative and migratory activity of endothelial cells, as well as the activation of caspase-3 and caspase-9 therein. It was established that the incubation of endothelial cells with MVs derived from cells of the NK-92 cell line stimulated with IL-1β and with MVs derived from unstimulated NK cells, leads to the decrease in the proliferative activity of endothelial cells, appearance of the pan leukocyte marker CD45 on them, caspase-3 activation and partial endothelial cell death, and reduced CD105 expression. However, compared with MVs derived from unstimulated NK cells, a more pronounced effect of MVs derived from cells of the NK-92 cell line stimulated with IL-1β was found in relation to the decrease in the endothelial cell migratory activity and the intensity of the CD54 molecule expression on them. The functional activity of MVs is therefore mediated by the conditions they are produced under, as well as their internal contents.  相似文献   

15.
Transforming growth factor-β1 (TGF-β1) occurs at high levels at damage sites of vascular endothelial cell layers and regulates the functions of vascular endothelial cells. Reactive sulfur species (RSS), such as cysteine persulfide, glutathione persulfide, and hydrogen persulfide, are cytoprotective factors against electrophiles such as reactive oxygen species and heavy metals. Previously, we reported that sodium trisulfide, a sulfane sulfur donor, promotes vascular endothelial cell proliferation. The objective of the present study was to clarify the regulation and significance of RSS synthesis in vascular endothelial cells after exposure to TGF-β1. Bovine aortic endothelial cells in a culture system were treated with TGF-β1 to assess the expression of intracellular RSS, the effect of RSS on cell proliferation in the presence of TGF-β1, induction of RSS-producing enzymes by TGF-β1, and intracellular signal pathways that mediate this induction. The results suggest that TGF-β1 increased intracellular RSS levels to modulate its inhibitory effect on proliferation. The increased production of RSS, probably high-molecular-mass RSS, was due to the induction of cystathionine γ-lyase and cystathionine β-synthase, which are RSS-producing enzymes, and the induction was mediated by the ALK5-Smad2/3/4 and ALK5-Smad2/3-ATF4 pathways in vascular endothelial cells. TGF-β1 regulates vascular endothelial cell functions such as proliferation and fibrinolytic activity; intracellular high-molecular-mass RSS, which are increased by TGF-β1, may modulate the regulation activity in vascular endothelial cells.  相似文献   

16.
17.
Low Protein Kinase C zeta (PKCζ) levels in cord blood T cells (CBTC) have been shown to correlate with the development of allergic sensitization in childhood. However, little is known about the mechanisms responsible. We have examined the relationship between the expression of different levels of PKCζ in CBTC and their development into mature T cell cytokine producers that relate to allergy or anti-allergy promoting cells. Maturation of naïve CBTC was initiated with anti-CD3/-CD28 antibodies and recombinant human interleukin-2 (rhIL-2). To stimulate lymphocyte proliferation and cytokine production the cells were treated with Phytohaemagglutinin (PHA) and Phorbol myristate acetate (PMA). Irrespective of the PKCζ levels expressed, immature CBTC showed no difference in lymphocyte proliferation and the production of T helper 2 (Th2) cytokine interleukin-4 (IL-4) and Th1 cytokine, interferon-gamma (IFN-γ), and influenced neither their maturation from CD45RA+ to CD45RO+ cells nor cell viability/apoptosis. However, upon maturation the low PKCζ expressing cells produced low levels of the Th1 cytokines, IFN-γ, IL-2 and tumour necrosis factor-alpha (TNF), no changes to levels of the Th2 cytokines, IL-4, IL-5 and IL-13, and an increase in the Th9 cytokine, IL-9. Other cytokines, lymphotoxin-α (LT-α), IL-10, IL-17, IL-21, IL-22 and Transforming growth factor-beta (TGF-β) were not significantly different. The findings support the view that low CBTC PKCζ levels relate to the increased risk of developing allergic diseases.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号