首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
Norepinephrine is a neurotransmitter that also has an immunomodulatory effect and is involved in multiple sclerosis (MS) pathogenesis. This study aimed to clarify the role of the β2-adrenoreceptor in the norepinephrine-mediated modulation of interleukin-17 (IL-17) and interferon-γ (IFN-γ) production, which play a critical pathogenetic role in MS. CD4+ T cells obtained from twenty-five relapsing-remitting MS patients and sixteen healthy subjects were cultured ex vivo with norepinephrine and/or β2-adrenoreceptor antagonist or agonist, followed by a cytokine production analysis using ELISA. Norepinephrine suppressed IL-17 and IFN-γ production by the anti-CD3/anti-CD28-microbead-stimulated CD4+ T cells in both groups. Blockade of the β2-adrenoreceptor with the specific antagonist ICI 118.551 enhanced norepinephrine-mediated IL-17 suppression but decreased its inhibitory effect on IFN-γ production in MS patients. In contrast, the β2-adrenoreceptor agonist formoterol did not influence norepinephrine’s inhibitory effect on cytokine production in both groups. The blockade of the β2-adrenoreceptor, even in the absence of exogenous norepinephrine, suppressed IL-17 production but did not influence IFN-γ production in both groups. Conversely, β2-adrenoreceptor activation by formoterol decreased IFN-γ production and did not affect IL-17 production in both groups. These data illustrate the inhibitory effect of norepinephrine on IL-17 and IFN-γ production by CD4+ T cells in MS. The inhibitory effect of norepinephrine on IFN-γ production by CD4+ T cells in MS could be mediated via β2-adrenoreceptor activation.  相似文献   

2.
Beta thalassemia major (βT) is a hereditary anemia characterized by transfusion-dependency, lifelong requirement of chelation, and organ dysfunction. MicroRNA (miRNA) can be packed into extracellular vesicles (EVs) that carry them to target cells. We explored EV-miRNA in βT and their pathophysiologic role. Circulating EVs were isolated from 35 βT-patients and 15 controls. EV miRNA was evaluated by nano-string technology and real-time quantitative polymerase chain reaction (RT-qPCR). We explored effects of EVs on cell culture proliferation, apoptosis, and signal transduction. Higher amounts of small EV (exosomes) were found in patients than in controls. The expression of 21 miRNA was > two-fold higher, and of 17 miRNA < three-fold lower in βT-EVs than control-EVs. RT-qPCR confirmed differential expression of six miRNAs in βT, particularly miR-144-3p, a regulator of erythropoiesis. Exposure of endothelial, liver Huh7, and pancreatic 1.1B4 cells to βT-EVs significantly reduced cell viability and increased cell apoptosis. βT-EV-induced endothelial cell apoptosis involved the MAPK/JNK signal-transduction pathway. In contrast, splenectomized βT-EVs induced proliferation of bone marrow mesenchymal stem cells (BM-MSC). In summary, the miR-144-3p was strongly increased; βT-EVs induced apoptosis and decreased endothelial, pancreatic, and liver cell survival while supporting BM-MSC proliferation. These mechanisms may contribute to βT organ dysfunction and complications.  相似文献   

3.
Attribution of specific roles to the two ubiquitously expressed PI 3-kinase (PI3K) isoforms p110α and p110β in biological functions they have been implicated, such as in insulin signalling, has been challenging. While p110α has been demonstrated to be the principal isoform activated downstream of the insulin receptor, several studies have provided evidence for a role of p110β. Here we have used isoform-selective inhibitors to estimate the relative contribution of each of these isoforms in insulin signalling in adipocytes, which are a cell type with essential roles in regulation of metabolism at the systemic level. Consistent with previous genetic and pharmacological studies, we found that p110α is the principal isoform activated downstream of the insulin receptor under physiological conditions. p110α interaction with Ras enhanced the strength of p110α activation by insulin. However, this interaction did not account for the selectivity for p110α over p110β in insulin signalling. We also demonstrate that p110α is the principal isoform activated downstream of the β-adrenergic receptor (β-AR), another important signalling pathway in metabolic regulation, through a mechanism involving activation of the cAMP effector molecule EPAC1. This study offers further insights in the role of PI3K isoforms in the regulation of energy metabolism with implications for the therapeutic application of selective inhibitors of these isoforms.  相似文献   

4.
The skin is a critical barrier that protects against damage and infection. Within the epidermis and dermis reside γδ T cells that play a variety of key roles in wound healing and tissue homeostasis. Skin-resident γδ T cells require T cell receptor (TCR) ligation, costimulation, and cytokine reception to mediate keratinocyte activity and inflammatory responses at the wound site for proper wound repair. While both epidermal and dermal γδ T cells regulate inflammatory responses in wound healing, the timing and factors produced are distinct. In the absence of growth factors, cytokines, and chemokines produced by γδ T cells, wound repair is negatively impacted. This disruption in γδ T cell function is apparent in metabolic diseases such as obesity and type 2 diabetes. This review provides the current state of knowledge on skin γδ T cell activation, regulation, and function in skin homeostasis and repair in mice and humans. As we uncover more about the complex roles played by γδ T cells in wound healing, novel targets can be discovered for future clinical therapies.  相似文献   

5.
The aim of this study is to explore the role of microRNAs (miR)-21/23a/146a/150/155 targeting the toll-like receptor pathway in active tuberculosis (TB) disease and latent TB infection (LTBI). Gene expression levels of the five miRs and predicted target genes were assessed in peripheral blood mononuclear cells from 46 patients with active pulmonary TB, 15 subjects with LTBI, and 17 non-infected healthy subjects (NIHS). THP-1 cell lines were transfected with miR-23a-3p mimics under stimuli with Mycobacterium TB-specific antigens. Both miR-155-5p and miR-150-5p gene expressions were decreased in the active TB group versus the NIHS group. Both miR-23a-3p and miR-146a-5p gene expressions were decreased in active TB patients with high bacterial burden versus those with low bacterial burden or control group (LTBI + NIHS). TLR2, TLR4, and interleukin (IL)10 gene expressions were all increased in active TB versus NIHS group. MiR-23a-3p mimic transfection reversed ESAT6-induced reduction of reactive oxygen species generation, and augmented ESAT6-induced late apoptosis and phagocytosis, in association with down-regulations of the predicted target genes, including tumor necrosis factor (TNF)-α, TLR4, TLR2, IL6, IL10, Notch1, IL6R, BCL2, TGF-β1, SP1, and IRF1. In conclusion, the down-regulation of miR-23a-3p in active TB patients with high bacterial burden inhibited mononuclear cell function and phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 signaling via targeting IRF1/SP1.  相似文献   

6.
Human γδ T cells show potent cytotoxicity against various types of cancer cells in a major histocompatibility complex unrestricted manner. Phosphoantigens and nitrogen-containing bisphosphonates (N-bis) stimulate γδ T cells via interaction between the γδ T cell receptor (TCR) and butyrophilin subfamily 3 member A1 (BTN3A1) expressed on target cells. γδ T cell immunotherapy is classified as either in vivo or ex vivo according to the method of activation. Immunotherapy with activated γδ T cells is well tolerated; however, the clinical benefits are unsatisfactory. Therefore, the antitumor effects need to be increased. Administration of γδ T cells into local cavities might improve antitumor effects by increasing the effector-to-target cell ratio. Some anticancer and molecularly targeted agents increase the cytotoxicity of γδ T cells via mechanisms involving natural killer group 2 member D (NKG2D)-mediated recognition of target cells. Both the tumor microenvironment and cancer stem cells exert immunosuppressive effects via mechanisms that include inhibitory immune checkpoint molecules. Therefore, co-immunotherapy with γδ T cells plus immune checkpoint inhibitors is a strategy that may improve cytotoxicity. The use of a bispecific antibody and chimeric antigen receptor might be effective to overcome current therapeutic limitations. Such strategies should be tested in a clinical research setting.  相似文献   

7.
The phosphatidylinositol 3-kinase (PI3K) family of enzymes plays a determinant role in inflammation and autoimmune responses. However, the implication of the different isoforms of catalytic subunits in these processes is not clear. Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease that entails innate and adaptive immune response elements in which PI3K is a potential hub for immune modulation. In a mouse transgenic model with T-cell-specific deletion of p110α catalytic chain (p110α−/−ΔT), we show the modulation of collagen-induced arthritis (CIA) by this isoform of PI3K. In established arthritis, p110α−/−ΔT mice show decreased prevalence of illness than their control siblings, higher IgG1 titers and lower levels of IL-6 in serum, together with decreased ex vivo Collagen II (CII)-induced proliferation, IL-17A secretion and proportion of naive T cells in the lymph nodes. In a pre-arthritis phase, at 13 days post-Ag, T-cell-specific deletion of p110α chain induced an increased, less pathogenic IgG1/IgG2a antibodies ratio; changes in the fraction of naive and effector CD4+ subpopulations; and an increased number of CXCR5+ T cells in the draining lymph nodes of the p110α−/−ΔT mice. Strikingly, T-cell blasts in vitro obtained from non-immunized p110α−/−ΔT mice showed an increased expression of CXCR5, CD44 and ICOS surface markers and defective ICOS-induced signaling towards Akt phosphorylation. These results, plus the accumulation of cells in the lymph nodes in the early phase of the process, could explain the diminished illness incidence and prevalence in the p110α−/−ΔT mice and suggests a modulation of CIA by the p110α catalytic chain of PI3K, opening new avenues of intervention in T-cell-directed therapies to autoimmune diseases.  相似文献   

8.
Obesity-associated low-grade inflammation favors weight gain, whereas systemic infection frequently leads to anorexia. Thus, inflammatory signals can either induce positive or negative energy balance. In this study, we used whole-cell patch-clamp to investigate the acute effects of three important proinflammatory cytokines, tumor necrosis factor α (TNF-α), interleukin-6, and interleukin-1β (IL-1β) on the membrane excitability of agouti-related peptide (AgRP)- or proopiomelanocortin (POMC)-producing neurons. We found that both TNF-α and IL-1β acutely inhibited the activity of 35–42% of AgRP-producing neurons, whereas very few POMC neurons were depolarized by TNF-α. Interleukin-6 induced no acute changes in the activity of AgRP or POMC neurons. Our findings indicate that the effect of TNF-α and IL-1β, especially on the activity of AgRP-producing neurons, may contribute to inflammation-induced anorexia observed during acute inflammatory conditions.  相似文献   

9.
A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, “disease specificity” has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, “disease specific” integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather “pathology specific” nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents.  相似文献   

10.
11.
12.
Experimental and clinical studies have suggested that several neurological disorders are associated with the occurrence of central nervous system neuroinflammation. Metaxalone is an FDA-approved muscle relaxant that has been reported to inhibit monoamine oxidase A (MAO-A). The aim of this study was to investigate whether metaxalone might exert antioxidant and anti-inflammatory effects in HMC3 microglial cells. An inflammatory phenotype was induced in HMC3 microglial cells through stimulation with interleukin-1β (IL-1β). Control cells and IL-1β-stimulated cells were subsequently treated with metaxalone (10, 20, and 40 µM) for six hours. IL-1β stimulated the release of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), but reduced the anti-inflammatory cytokine interleukin-13 (IL-13). The upstream signal consisted of an increased priming of nuclear factor-kB (NF-kB), blunted peroxisome proliferator-activated receptor gamma (PPARγ), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression. IL-1β also augmented MAO-A expression/activity and malondialdehyde levels and decreased Nrf2 mRNA expression and protein levels. Metaxalone decreased MAO-A activity and expression, reduced NF-kB, TNF-α, and IL-6, enhanced IL-13, and also increased PPARγ, PGC-1α, and Nrf2 expression. The present experimental study suggests that metaxalone has potential for the treatment of several neurological disorders associated with neuroinflammation.  相似文献   

13.
Osteosarcoma is the most common type of primary malignant bone cancer, and it is associated with high rates of pulmonary metastasis. Integrin αvβ3 is critical for osteosarcoma cell migratory and invasive abilities. Chemokine (C-C motif) ligand 4 (CCL4) has diverse effects on different cancer cells through its interaction with its specific receptor, C-C chemokine receptor type 5 (CCR5). Analysis of mRNA expression in human osteosarcoma tissue identified upregulated levels of CCL4, integrin αv and β3 expression. Similarly, an analysis of records from the Gene Expression Omnibus (GEO) dataset showed that CCL4 was upregulated in human osteosarcoma tissue. Importantly, the expression of both CCL4 and integrin αvβ3 correlated positively with osteosarcoma clinical stages and lung metastasis. Analysis of osteosarcoma cell lines identified that CCL4 promotes integrin αvβ3 expression and cell migration by activating the focal adhesion kinase (FAK), protein kinase B (AKT), and hypoxia inducible factor 1 subunit alpha (HIF-1α) signaling pathways, which can downregulate microRNA-3927-3p expression. Pharmacological inhibition of CCR5 by maraviroc (MVC) prevented increases in integrin αvβ3 expression and cell migration. This study is the first to implicate CCL4 as a potential target in the treatment of metastatic osteosarcoma.  相似文献   

14.
It was proven that sterols subjected to high-temperature treatment can be concatenated, which results in polymeric structures, e.g., 3β,3′β-disteryl ethers. However, it was also proven that due to increased temperature in oxygen-containing conditions, sterols can undergo various oxidation reactions. This study aimed to prove the existence and perform quantitative analysis of oxidized 3β,3′β-disteryl ethers, which could form during high-temperature treatment of sterol-rich samples. Samples were heated at 180, 200 and 220 °C for 0.5 to 4 h. Quantitative analyses of the oxidized 3β,3′β-disteryl ethers were performed with liquid extraction, solid-phase extraction and liquid chromatography coupled with mass spectrometry. Additionally, to perform this analysis, the appropriate standards of all oxidized 3β,3′β-disteryl ethers were prepared. Eighteen various oxidized 3β,3′β-disteryl ethers (derivatives of 3β,3′β-dicholesteryl ether, 3β,3′β-disitosteryl ether and 3β,3′β-distigmasteryl ether) were prepared. Additionally, the influence of metal compounds on the mechanism of ether formation at high temperatures was investigated.  相似文献   

15.
Cardiac fibrosis is a pathological process associated with the development of heart failure. TGF-β and WNT signaling have been implicated in pathogenesis of cardiac fibrosis, however, little is known about molecular cross-talk between these two pathways. The aim of this study was to examine the effect of exogenous canonical WNT3a and non-canonical WNT5a in TGF-β-activated human cardiac fibroblasts. We found that WNT3a and TGF-β induced a β-catenin-dependent response, whereas WNT5a prompted AP-1 activity. TGF-β triggered profibrotic signatures in cardiac fibroblasts, and co-stimulation with WNT3a or co-activation of the β-catenin pathway with the GSK3β inhibitor CHIR99021 enhanced collagen I and fibronectin production and development of active contractile stress fibers. In the absence of TGF-β, neither WNT3a nor CHIR99021 exerted profibrotic responses. On a molecular level, in TGF-β-activated fibroblasts, WNT3a enhanced phosphorylation of TAK1 and production and secretion of IL-11 but showed no effect on the Smad pathway. Neutralization of IL-11 activity with the blocking anti-IL-11 antibody effectively reduced the profibrotic response of cardiac fibroblasts activated with TGF-β and WNT3a. In contrast to canonical WNT3a, co-activation with non-canonical WNT5a suppressed TGF-β-induced production of collagen I. In conclusion, WNT/β-catenin signaling promotes TGF-β-mediated fibroblast-to-myofibroblast transition by enhancing IL-11 production. Thus, the uncovered mechanism broadens our knowledge on a molecular basis of cardiac fibrogenesis and defines novel therapeutic targets for fibrotic heart diseases.  相似文献   

16.
Interleukin (IL)-1β is an important pro-inflammatory cytokine in the progression of osteoarthritis (OA), which impairs mitochondrial function and induces the production of nitric oxide (NO) in chondrocytes. The aim was to investigate if blockade of NO production prevents IL-1β-induced mitochondrial dysfunction in chondrocytes and whether cAMP and AMP-activated protein kinase (AMPK) affects NO production and mitochondrial function. Isolated human OA chondrocytes were stimulated with IL-1β in combination with/without forskolin, L-NIL, AMPK activator or inhibitor. The release of NO, IL-6, PGE2, MMP3, and the expression of iNOS were measured by ELISA or Western blot. Parameters of mitochondrial respiration were measured using a seahorse analyzer. IL-1β significantly induced NO release and mitochondrial dysfunction. Inhibition of iNOS by L-NIL prevented IL-1β-induced NO release and mitochondrial dysfunction but not IL-1β-induced release of IL-6, PGE2, and MMP3. Enhancement of cAMP by forskolin reduced IL-1β-induced NO release and prevented IL-1β-induced mitochondrial impairment. Activation of AMPK increased IL-1β-induced NO production and the negative impact of IL-1β on mitochondrial respiration, whereas inhibition of AMPK had the opposite effects. NO is critically involved in the IL-1β-induced impairment of mitochondrial respiration in human OA chondrocytes. Increased intracellular cAMP or inhibition of AMPK prevented both IL-1β-induced NO release and mitochondrial dysfunction.  相似文献   

17.
One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3β. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3β (Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/β phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/β reduced thrombin-mediated platelet aggregation, integrin αIIbβ3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3β phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3β resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/β KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3β KI. In conclusion, our data indicate that GSK3α and GSK3β have differential roles in regulating platelet function.  相似文献   

18.
19.
Peroxisome proliferator activated receptor beta/delta (PPARβ/δ) is a nuclear receptor ubiquitously expressed in cells, whose signaling controls inflammation. There are large discrepancies in understanding the complex role of PPARβ/δ in disease, having both anti- and pro-effects on inflammation. After ligand activation, PPARβ/δ regulates genes by two different mechanisms; induction and transrepression, the effects of which are difficult to differentiate directly. We studied the PPARβ/δ-regulation of lipopolysaccharide (LPS) induced inflammation (indicated by release of nitrite and IL-6) of rat pulmonary artery, using different combinations of agonists (GW0742 or L−165402) and antagonists (GSK3787 or GSK0660). LPS induced release of NO and IL-6 is not significantly reduced by incubation with PPARβ/δ ligands (either agonist or antagonist), however, co-incubation with an agonist and antagonist significantly reduces LPS-induced nitrite production and Nos2 mRNA expression. In contrast, incubation with LPS and PPARβ/δ agonists leads to a significant increase in Pdk−4 and Angptl−4 mRNA expression, which is significantly decreased in the presence of PPARβ/δ antagonists. Docking using computational chemistry methods indicates that PPARβ/δ agonists form polar bonds with His287, His413 and Tyr437, while antagonists are more promiscuous about which amino acids they bind to, although they are very prone to bind Thr252 and Asn307. Dual binding in the PPARβ/δ binding pocket indicates the ligands retain similar binding energies, which suggests that co-incubation with both agonist and antagonist does not prevent the specific binding of each other to the large PPARβ/δ binding pocket. To our knowledge, this is the first time that the possibility of binding two ligands simultaneously into the PPARβ/δ binding pocket has been explored. Agonist binding followed by antagonist simultaneously switches the PPARβ/δ mode of action from induction to transrepression, which is linked with an increase in Nos2 mRNA expression and nitrite production.  相似文献   

20.
The complexity of the human immune system is exacerbated by age-related changes to immune cell functionality. Many of these age-related effects remain undescribed or driven by mechanisms that are poorly understood. γδ T cells, while considered an adaptive subset based on immunological ontogeny, retain both innate-like and adaptive-like characteristics. This T cell population is small but mighty, and has been implicated in both homeostatic and disease-induced immunity within tissues and throughout the periphery. In this review, we outline what is known about the effect of age on human peripheral γδ T cells, and call attention to areas of the field where further research is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号