首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation. All the other types of ubiquitination, including monoubiquitination; multi-monoubiquitination; and polyubiquitination involving lysine residues K6, K11, K27, K29, K33, and K63 and N-terminal methionine, were defined as atypical ubiquitination (AU). Good evidence now exists that AUs, participating in the regulation of various cellular processes, are crucial for the development of Parkinson’s disease (PD). These AUs target various proteins involved in PD pathogenesis. The K6-, K27-, K29-, and K33-linked polyubiquitination of alpha-synuclein, the main component of Lewy bodies, and DJ-1 (another PD-associated protein) is involved in the formation of insoluble aggregates. Multifunctional protein kinase LRRK2 essential for PD is subjected to K63- and K27-linked ubiquitination. Mitophagy mediated by the ubiquitin ligase parkin is accompanied by K63-linked autoubiquitination of parkin itself and monoubiquitination and polyubiquitination of mitochondrial proteins with the formation of both classical K48-linked ubiquitin chains and atypical K6-, K11-, K27-, and K63-linked polyubiquitin chains. The ubiquitin-specific proteases USP30, USP33, USP8, and USP15, removing predominantly K6-, K11-, and K63-linked ubiquitin conjugates, antagonize parkin-mediated mitophagy.  相似文献   

2.
The CDC73/HRPT2 gene, a defect which causes hyperparathyroidism–jaw tumor (HPT-JT) syndrome, encodes CDC73/parafibromin. We aimed to investigate whether CDC73 would be a target for ubiquitin–proteasome degradation. We cloned full-length cDNAs encoding a family of 58 ubiquitin-specific deubiquitinating enzymes (DUBs), also known as ubiquitin-specific proteases (USPs). Use of the yeast two-hybrid system then enabled us to identify USP37 as interacting with CDC73. The biochemical interaction between the USP37 and CDC73 and their reciprocal binding domains were studied. Co-localization of CDC73 and USP37 was observed in cells. CDC73 was found to be polyubiquitinated, and polyubiquitination of CDC73 was prominent in mutants. CDC73 was deubiquitinated via K48-specific ubiquitin chains by USP37, but not by the catalytically inactive USP37C350S mutant. Observation of the binding between deletion mutants of CDC73 and USP37 revealed that the β-catenin binding site of CDC73 and the ubiquitin-interacting motifs 2 and 3 (UIM2 and 3) of USP37 were responsible for the interaction between the two proteins. Moreover, these two enzymes co-existed within the nucleus of COS7 cells. We conclude that USP37 is a DUB for CDC73 and that the two proteins interact through specific domains, suggesting that USP37 is responsible for the stability of CDC73 in HPT-JT syndrome.  相似文献   

3.
Cardiovascular diseases (CVDs) present a major social problem worldwide due to their high incidence and mortality rate. Many pathophysiological mechanisms are involved in CVDs, and oxidative stress plays a vital mediating role in most of these mechanisms. The ubiquitin–proteasome system (UPS) is the main machinery responsible for degrading cytosolic proteins in the repair system, which interacts with the mechanisms regulating endoplasmic reticulum homeostasis. Recent evidence also points to the role of UPS dysfunction in the development of CVDs. The UPS has been associated with oxidative stress and regulates reduction–oxidation homeostasis. However, the mechanisms underlying UPS-mediated oxidative stress’s contribution to CVDs are unclear, especially the role of these interactions at different disease stages. This review highlights the recent research progress on the roles of the UPS and oxidative stress, individually and in combination, in CVDs, focusing on the pathophysiology of key CVDs, including atherosclerosis, ischemia–reperfusion injury, cardiomyopathy, and heart failure. This synthesis provides new insight for continued research on the UPS–oxidative stress interaction, in turn suggesting novel targets for the treatment and prevention of CVDs.  相似文献   

4.
The maintenance of proteome homeostasis, or proteostasis, is crucial for preserving cellular functions and for cellular adaptation to environmental challenges and changes in physiological conditions. The capacity of cells to maintain proteostasis requires precise control and coordination of protein synthesis, folding, conformational maintenance, and clearance. Thus, protein degradation by the ubiquitin–proteasome system (UPS) or the autophagy–lysosomal system plays an essential role in cellular functions. However, failure of the UPS or the autophagic process can lead to the development of various diseases (aging-associated diseases, cancer), thus both these pathways have become attractive targets in the treatment of protein conformational diseases, such as alpha 1-antitrypsin deficiency (AATD). The Z alpha 1-antitrypsin (Z-AAT) misfolded variant of the serine protease alpha 1-antitrypsin (AAT) is caused by a structural change that predisposes it to protein aggregation and dramatic accumulation in the form of inclusion bodies within liver hepatocytes. This can lead to clinically significant liver disease requiring liver transplantation in childhood or adulthood. Treatment of mice with autophagy enhancers was found to reduce hepatic Z-AAT aggregate levels and protect them from AATD hepatotoxicity. To date, liver transplantation is the only curative therapeutic option for patients with AATD-mediated liver disease. Therefore, the development and discovery of new therapeutic approaches to delay or overcome disease progression is a top priority. Herein, we review AATD-mediated liver disease and the overall process of autophagy. We highlight the role of this system in the regulation of Z-variant degradation and its implication in AATD-medicated liver disease, including some open questions that remain challenges in the field and require further elucidation. Finally, we discuss how manipulation of autophagy could provide multiple routes of therapeutic benefit in AATD-mediated liver disease.  相似文献   

5.
Cancer is a disorder of cell growth and proliferation, characterized by different metabolic pathways within normal cells. The Warburg effect is a major metabolic process in cancer cells that affects the cellular responses, such as proliferation and apoptosis. Various signaling factors down/upregulate factors of the glycolysis pathway in cancer cells, and these signaling factors are ubiquitinated/deubiquitinated via the ubiquitin–proteasome system (UPS). Depending on the target protein, DUBs act as both an oncoprotein and a tumor suppressor. Since the degradation of tumor suppressors and stabilization of oncoproteins by either negative regulation by E3 ligases or positive regulation of DUBs, respectively, promote tumorigenesis, it is necessary to suppress these DUBs by applying appropriate inhibitors or small molecules. Therefore, we propose that the DUBs and their inhibitors related to the Warburg effect are potential anticancer targets.  相似文献   

6.
Mahogunin ring finger 1 (MGRN1), an E3 ubiquitin, is involved in several physiological and neuropathological processes. Although mgrn1 mRNA is widely distributed in the central nervous system (CNS), detailed information on its cellular and subcellular localization is lacking and its physiological role remains unclear. In this study, we aimed to determine the distribution of MGRN1 in the mouse CNS using a newly produced antibody against MGRN1. We found that the MGRN1 protein was expressed in most neuronal cell bodies. An intense MGRN1 expression was also observed in the neuropil of the gray matter in different regions of the CNS, including the main olfactory bulb, cerebral cortex, caudate, putamen, thalamic nuclei, hypothalamic nuclei, medial eminence, superior colliculus, hippocampus, dentate gyrus, and spinal cord. Contrastingly, no MGRN1 expression was observed in glial cells. Double fluorescence and immunoelectron microscopic analyses revealed the intracellular distribution of MGRN1 in pre-synapses and near the outer membrane of the mitochondria in neurons. These findings indicate that MGRN1 is more widely expressed throughout the CNS; additionally, the intracellular expression of MGRN1 suggests that it may play an important role in synaptic and mitochondrial functions.  相似文献   

7.
8.
9.
VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE1 (VAL1) encodes a DNA-binding B3 domain protein and plays essential roles in seed maturation and flowering transition by repressing genes through epigenetic silencing in Arabidopsis. SWI-INDEPENDENT3 (SIN3)-LIKEs (SNLs), which encode scaffold proteins for the assembly of histone deacetylase complexes and have six SIN3 homologues (SNL1–SNL6) in Arabidopsis thaliana, directly repress gene expression to regulate seed maturation and flowering transition. However, it remains unclear whether VAL1 and SNLs work together in repressing the expression of related genes. In this study, yeast two-hybrid and firefly luciferase complementation imaging assays revealed that VAL1 interacts with SNLs, which can be attributed to its own zinc-finger CW (conserved Cys (C) and Trp (W) residues) domain and the PAH (Paired Amphipathic Helices) domains of SNLs. Furthermore, pull-down experiments confirmed that the CW domain of VAL1 interacts with both intact protein and the PAH domains of SNLs proteins, and the co-immunoprecipitation assays also confirmed the interaction between VAL1 and SNLs. In addition, quantitative real-time PCR (qRT-PCR) analysis showed that VAL1 and SNLs were expressed in seedlings, and transient expression assays showed that VAL1 and SNLs were localized in the nucleus. Considered together, these results reveal that VAL1 physically interacts with SNLs both in vitro and in vivo, and suggest that VAL1 and SNLs may work together to repress the expression of genes related to seed maturation and flowering transition in Arabidopsis.  相似文献   

10.
11.
Epithelial–mesenchymal transition (EMT) is important for the initial steps of metastasis. Although it is well accepted that the nucleoside diphosphate kinase NME1 is a metastasis suppressor, its effect on EMT remains poorly documented, as does that of its closely related isoform, NME2. Here, by using gene silencing, inactivation and overexpression strategies in a variety of cellular models of cancer, we show that NME1 is a powerful inhibitor of EMT. Genetic manipulation of NME2, by contrast, had no effect on the EMT phenotype of cancer cells, indicating a specific function of NME1 in EMT regulation. Loss of NME1 in epithelial cancer cells resulted in a hybrid phenotype intermediate between epithelial and mesenchymal cells, which is known to be associated with cells with a highly metastatic character. Conversely, overexpression of NME1 in mesenchymal cancer cells resulted in a more epithelial phenotype. We found that NME1 expression was negatively associated with EMT markers in many human cancers and was reduced in human breast tumor cell lines with the aggressive ‘triple-negative’ phenotype when compared to human breast tumor cell lines positive for estrogen receptor. We show that NME1, but not NME2, is an inhibitor of essential concerted intracellular signaling pathways involved in inducing EMT, including the AKT and MAPK (ERK, p38, and JNK) pathways. Additionally, NME1 depletion considerably altered the distribution of E-cadherin, a gatekeeper of the epithelial phenotype, shifting it from the plasma membrane to the cytosol and resulting in less E-cadherin on the cell surface than in control cells. Functional aggregation and dispersion assays demonstrated that inactivation of NME1 decreases E-cadherin-mediated cell–cell adhesion. We conclude that NME1, but not NME2, acts specifically to inhibit EMT and prevent the earliest stages of metastasis.  相似文献   

12.
13.
14.
The circadian clock coordinates biological and physiological functions to day/night cycles. The perturbation of the circadian clock increases cancer risk and affects cancer progression. Here, we studied how BMAL1 knockdown (BMAL1-KD) by shRNA affects the epithelial–mesenchymal transition (EMT), a critical early event in the invasion and metastasis of colorectal carcinoma (CRC). In corresponding to a gene set enrichment analysis, which showed a significant enrichment of EMT and invasive signatures in BMAL1_high CRC patients as compared to BMAL1_low CRC patients, our results revealed that BMAL1 is implicated in keeping the epithelial–mesenchymal equilibrium of CRC cells and influences their capacity of adhesion, migration, invasion, and chemoresistance. Firstly, BMAL1-KD increased the expression of epithelial markers (E-cadherin, CK-20, and EpCAM) but decreased the expression of Twist and mesenchymal markers (N-cadherin and vimentin) in CRC cell lines. Finally, the molecular alterations after BMAL1-KD promoted mesenchymal-to-epithelial transition-like changes mostly appeared in two primary CRC cell lines (i.e., HCT116 and SW480) compared to the metastatic cell line SW620. As a consequence, migration/invasion and drug resistance capacities decreased in HCT116 and SW480 BMAL1-KD cells. Together, BMAL1-KD alerts the delicate equilibrium between epithelial and mesenchymal properties of CRC cell lines, which revealed the crucial role of BMAL1 in EMT-related CRC metastasis and chemoresistance.  相似文献   

15.
16.
17.
18.
Despite recent advances in treatment, the prognosis of oral cancer remains poor, and prevention of recurrence and metastasis is critical. Olaparib is a PARP1 inhibitor that blocks polyADP-ribosylation, which is involved in the epithelial–mesenchymal transition (EMT) characteristic of tumor recurrence. We explored the potential of olaparib in inhibiting cancer invasion in oral carcinoma using three oral cancer cell lines, HSC-2, Ca9-22, and SAS. Olaparib treatment markedly reduced their proliferation, migration, invasion, and adhesion. Furthermore, qRT-PCR revealed that olaparib inhibited the mRNA expression of markers associated with tumorigenesis and EMT, notably Ki67, Vimentin, β-catenin, MMP2, MMP9, p53, and integrin α2 and β1, while E-Cadherin was upregulated. In vivo analysis of tumor xenografts generated by injection of HSC-2 cells into the masseter muscles of mice demonstrated significant inhibition of tumorigenesis and bone invasion by olaparib compared with the control. This was associated with reduced expression of proteins involved in osteoclastogenesis, RANK and RANKL. Moreover, SNAIL and PARP1 were downregulated, while E-cadherin was increased, indicating the effect of olaparib on proteins associated with EMT in this model. Taken together, these findings confirm the effects of olaparib on EMT and bone invasion in oral carcinoma and suggest a new therapeutic strategy for this disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号