首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 9 毫秒
1.
The nuclear reactor core design and the nuclear fuel management have been changed remarkable during the last few years. This development was initiated by increasing costs for the fuel recycling and nuclear waste storage. The fuel material, the fuel pellet fabrication, the fuel assembly structure and the core composition have been varied to get an effective fuel exploitation. Based on advanced core process conditions the reactor power and the fuel burn-up have been increased at German plants in recent years. Improved dynamic process monitoring procedures are required to get more information about the varied core process behaviour during the reactor operation. Since several years ISTec has been performed investigations to the process monitoring based on process signal measurements in German nuclear power plants. Using the standard instrumentation of the plants process signals have been measured and analysed by means of the digital data acquisition system SIGMA. The measured time signals are influenced by core process transients, global and local process fluctuations and by signal line transfer functions. Advanced time series analysis methods have been applied to separate different process effects in the multiple signal matrix. The separation of different process influences can improve significantly the information about the process condition in the reactor core.  相似文献   

2.
A new method for estimating reactivity parameters, such as moderator temperature coefficient (MTC) and void reactivity coefficient (VRC), is proposed using steady-state noise data. In order to solve the ill-posed problem of reactivity parameter estimation, a concept of a gray box model is newly introduced. The gray box model includes a first principle based model and a black-box fitting model. The former model acts as a priori knowledge based constraints in a parameter estimation problem. After establishing the gray box and noise source models, the maximum likelihood estimation method based on Kalman filter is applied. Furthermore, it is shown that the frequency domain approach of the gray box model is useful in the case of VRC estimation. The effectiveness of the proposed algorithms is shown through numerical simulation and actual plant data analysis.  相似文献   

3.
After the upgrade of Borssele NPP in 1997, core cycle 24, the power plant operated three years more with 91% availability. The authority of the power plant decided to enhance and upgrade the reactor trend monitoring and plant information recording system with higher frequencies than the plant data processing system (PPS) as well as installing a flexible and multiple-purpose reactor noise analysis system which may support the reactor maintenance group with on-line and off-line capabilities for several different signal processing applications. Two measuring and monitoring systems were built in 2001 and fully taken in implementation during the start-up of the new core 28. In this sense, the new system was used in power operation during the 29th of September 2001. This paper will introduce the measuring system, the operational tasks, and the results obtained so far on the real-time core-barrel motions (CBM) and the two-primary coolant pump vibrations measured through the reactor noise analysis.  相似文献   

4.
The vibration characteristics of a Korean standard PWR reactor internals have been estimated through a three-dimensional finite element analyses and verified by using the mode separated power spectral density functions obtained from the ex-core neutron noise signals. Also the natural vibration modes of the fuel assembly have been identified measuring both the ex-core and the in-core neutron noise signals which are close to each other. As a result, the fundamental bending mode frequency of the reactor internal structure is found to be around 8 Hz and the fundamental shell mode frequency 14.5 Hz, respectively. It is also shown that the fundamental bending mode frequency of the fuel assembly is 2.3 Hz and the 2nd bending mode frequency 5.8 Hz, respectively. These results can be used for the supplements of the Korean standard PWR's CVAP (Comprehensive Vibration Assessment Program) data.  相似文献   

5.
Substantial progress has been achieved in the identification of loose parts which had been detected by acoustic monitoring of reactor primary system. Several years of practical experience and the use of the offline digital analysis system MEDEA proved that acoustic monitoring is very successful for detecting component failures at an early stage. ISTec is involved in loose parts monitoring in several nuclear power plants in Germany. Advanced powerful tools for classification and evaluation of burst signals have been realised.

Loose parts monitoring systems, which are installed in all German nuclear power plants (NPPs), indicated specific impact conditions at lower plenum of two BWR's. Flow tests were carried out with various coolant flow rates of internal axial pumps and use of model nuts in one case. More than 2000 different bursts have been analysed to provide information in detail about impact occurrences, their spectral characteristics and impact sequences. Burst shape parameters could be determined and signal amplitudes have been trended. Determination of the sound origin — fixed origin in one case, flow-induced moving origin in the other case - and mass estimation of the loose parts could be performed by application of advanced burst analysis methods. Characteristics of the impact signals are presented in the paper.  相似文献   


6.
A new method for an on-line monitoring system for the nuclear power plants has been developed utilizing the neural networks and the expert system. The integration of them is expected to enhance a substantial potential of the functionality as operators support.

The recurrent neural network and the feed-forward neural network with adaptive learning are selected for the plant modeling and anomaly detection because of the high capability of modeling for dynamic behavior. The expert system is used as a decision agent, which works on the information space of both the neural networks and the human operators. The information of other sensory signals is also fed to the expert system, together with the outputs that the neural networks generate from the measured plant signals. The expert system can treat almost all known correlation between plant status patterns and operation modes as a priori set of rules.

From the off-line test at Borssele Nuclear Power Plant (PWR 480 MWe) in the Netherlands, it was shown that the neuro-expert system successfully monitored the plant status. The expert system worked satisfactorily in diagnosing the system status by using the outputs of the neural networks and a priori knowledge base from the PWR simulator. The electric power coefficient is simultaneously monitored from the measured reactive and active electric power signals.  相似文献   


7.
The aim of this paper is to provide an overview of the existing wire-wrapped fuel bundle friction factor/pressure drop correlations and to qualitatively evaluate which of the existing friction factor correlations are the best in retracing the results of a large set of the experimental data available on wire-wrapped fuel assemblies tested under different coolant conditions.  相似文献   

8.
9.
This paper presents an overview of instrumentation and control (I&C) systems of a pressurized water reactor (PWR) type nuclear power plant (NPP) in Korea. Yonggwang unit 3, which was constructed as a basis model for a Korea standard nuclear power plant (KSNP), is selected as an example for the presentation. This overview is derived from analyzing the I&C systems based on a top-down approach. The I&C systems consist of 30 systems. The 183 I&C cabinets are also analyzed and mapped to the systems. The overview is focused on an interface between the systems and the cabinets. This information will be used to understand the implementation of the I&C systems and to group the systems for an upgrade.  相似文献   

10.
This paper presents the architecture for upgrading the instrumentation and control (I&C) systems of a Korean standard nuclear power plant (KSNP) as an operating nuclear power plant. This paper uses the analysis results of KSNP's I&C systems performed in a previous study. This paper proposes a Preparation–Decision–Design–Assessment (PDDA) process that focuses on quality oriented development, as a cyclical process to develop the architecture. The PDDA was motivated from the practice of architecture-based development used in software engineering fields. In the preparation step of the PDDA, the architecture of digital-based I&C systems was setup for an architectural goal. Single failure criterion and determinism were setup for architectural drivers. In the decision step, defense-in-depth, diversity, redundancy, and independence were determined as architectural tactics to satisfy the single failure criterion, and sequential execution was determined as a tactic to satisfy the determinism. After determining the tactics, the primitive digital-based I&C architecture was determined. In the design step, 17 systems were selected from the KSNP's I&C systems for the upgrade and functionally grouped based on the primitive architecture. The overall architecture was developed to show the deployment of the systems. The detailed architecture of the safety systems was developed by applying a 2-out-of-3 voting logic, and the detailed architecture of the non-safety systems was developed by hot-standby redundancy. While developing the detailed architecture, three ways of signal transmission were determined with proper rationales: hardwire, datalink, and network. In the assessment step, the required network performance, considering the worst-case of data transmission was calculated: the datalink was required by 120 kbps, the safety network by 5 Mbps, and the non-safety network by 60 Mbps. The architecture covered 17 systems out of 22 KSNP's I&C systems. The architecture is implementable with the equipment developed in South Korea. The architecture can be used as a model to upgrade the existing I&C systems in a planned, large-scale, and one-shot manner. A more detailed architecture down to software level will be developed in the future.  相似文献   

11.
The paper presents variations of a certain passive safety containment for a near future BWR. It is tentatively named Mark S containment in the paper. It uses the operating dome as the upper secondary containment vessel (USCV) to where the pressure of the primary containment vessel (PCV) can be released through the upper vent pipes. One of the merits of the Mark S containment is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. Another merit is the capability to submerge the PCV and the reactor pressure vessel (RPV) above the core level by flooding water from the gravity-driven cooling system (GDCS) pool and the upper pool. The third merit is robustness against external events such as a large commercial airplane crash owing to the reinforced concrete USCV. The Mark S containment is applicable to a large reactor that generates 1830 MW electric power. The paper presents several examples of BWRs that use the Mark S containment. In those examples active safety systems and passive safety systems function independently and constitute in-depth hybrid safety (IDHS). The concept of the IDHS is also presented in the paper.  相似文献   

12.
The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.  相似文献   

13.
In this paper, an attempt has been made to systematically organize the research investigations conducted on clad tube failure, so far. Before presenting the review on the clad failure studies, an introduction to different clad materials has been added, in which the effect of alloying elements on the material properties have been presented. The literature on clad failure has been broadly categorized under the headings LOCA and RIA. The failure mechanisms like creep, corrosion and pellet-clad interaction have been discussed in details. Each subsection of the review has been provided with summary table, in which the studies are arranged in the chronological order. A small section on acceptance criteria for ECCS has also been included. The last section of the review has been dedicated to the core-degradation phenomena.  相似文献   

14.
In order to ensure the safe operation of the nuclear power plants accident management programs are being developed around the world. These accident management programs cover the whole spectrum of accidents, including severe accidents. A lot of work is done to investigate the severe accident phenomena and implement severe accident management in NPPs with vessel-type reactors, while less attention is paid to channel-type reactors CANDU and RBMK.Ignalina NPP with RBMK-1500 reactor has implemented symptom based emergency operation procedures, which cover management of accidents until the core damage and do not extend to core damage region. In order to ensure coverage of the whole spectrum of accidents and meet the requirements of IAEA the severe accident management guidelines have to be developed.This paper presents the basic principles and approach to management of beyond design basis accidents at Ignalina NPP. In general, this approach could be applied to NPPs with RBMK-1000 reactors that are available in Russia, but the design differences should be taken into account.  相似文献   

15.
The stress corrosion cracking (SCC) and corrosion fatigue behaviour perpendicular and parallel to the fusion line in the transition region between the Alloy 182 Nickel-base weld metal and the adjacent SA 508 Cl.2 low-alloy reactor pressure vessel (RPV) steel of a simulated dissimilar metal weld joint was investigated under boiling water reactor normal water chemistry conditions. A special emphasis was placed to the question whether a fast growing interdendritic SCC crack in the highly susceptible Alloy 182 weld metal can easily cross the fusion line and significantly propagate into the adjacent low-alloy RPV steel. Cessation of interdendritic SCC crack growth was observed in high-purity or sulphate-containing oxygenated water under constant or periodical partial unloading conditions for those parts of the crack front, which reached the fusion line. In chloride containing water, on the other hand, the interdendritic SCC crack in the Alloy 182 weld metal very easily crossed the fusion line and further propagated with a very high rate as a transgranular crack into the heat-affected zone and base metal of the adjacent low-alloy steel. The observed SCC cracking behaviour at the interface correlates excellently with the field experience of such dissimilar metal weld joints, where SCC cracking was usually confined to the Alloy 182 weld metal.  相似文献   

16.
17.
This paper presents the results of thermal-hydraulic calculations of a large break loss of coolant accident (LBLOCA) analysis for a VVER-1000/V446 unit at Bushehr nuclear power plant (BNPP). LBLOCA is analysis in two different beyond design basis accident (BDBA) scenarios using the RELAP5/MOD3.2 best estimate code. The scenarios are LBLOCA with station blackout (SBO) and LBLOCA with pump re-circulation blockage which have been evaluated in the final safety analysis report (FSAR) of BNPP. A model of VVER-1000 reactor based on Unit 1 of BNPP has been developed for the RELAP5/MOD3.2 thermal-hydraulics code consists of 4-loop primary and secondary systems with all their relevant sub-systems important to safety analysis. The analysis is performed without regard for operator's actions on accident management. The safety analysis is carried out and the results are checked against the acceptance criteria which are the possibility of using water inventory in the emergency core cooling system (ECCS) accumulators and the KWU tanks for core cooling and the available time to operators before the maximum design limit of fuel rod cladding damage is reached. These kinds of analyses are performed to provide the response of monitored plant parameters to identify symptoms available to the operators, timing of the loss of critical safety functions and timing of operator actions to avoid the loss of critical safety functions of core damage. The results of performed analyses show that the operators have 2.9 and 3.1 h for LBLOCA with SBO and LBLOCA with pump re-circulation blockage scenarios, respectively, before the fuel rod cladding rupture. The results are also compared with the BNPP FSAR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号